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Chapter 10
Journey to Crime Estimation

The J ourney to Crim e (J tc) rout ine is  a  dis tance-based method which makes
est im ates about  the likely residen t ia l loca t ion  of a  ser ia l offender .  I t  is  an  applica t ion  of
location th eory, a  framework for  iden t ifyin g opt im al loca t ion s from a  dis t r ibu t ion  of
market s, supply character is t ics , pr ices, a nd event s.  The followin g discussion  gives some
backgr ound to the technique.  Those wish in g t o skip  th is  par t  can  go t o page 10-19 for  the
specifics of the J t c rou t ine.

Loca tio n  The ory

Loca t ion  theory is  concerned wit h  one of the cent ra l issues in  geograph y.  This
theory at t empt s t o find  an  opt ima l loca t ion  for  any par t icu lar  dist r ibut ion  of act ivities,
popula t ion, or  even t s over  a  region (Ha gget t , Cliff and F rey, 1977; Kr ueckeberg and
Silvers, 1974;  Stopher  and Meybu rg, 1975; Oppenheim , 1980, Ch . 4;  Bossard, 1993).  In
classic loca t ion  theory, economic resour ces wer e a lloca ted in r elat ion  to idealized
repr esen ta t ions (Anselin a nd Ma dden , 1990).  Thu s, von  Thü nen  (1826) ana lyzed the
dis t r ibu t ion  of agr icu lt u ra l land as a  funct ion  of the accessibilit y t o a  sin gle popula t ion
center  (which  would  be more expensive towards the cen ter ), t he va lu e of the product
produced (which  would  va ry by cr op), a nd t ranspor ta t ion  cost s (which  would  be more
expen sive far ther  from the cen ter ).  In  order  to ma ximize profit  and m in imize cost s, a
dis t r ibu t ion  of agr icu lt u ra l land uses (or  crop areas) emerges flowin g ou t  from the
popula t ion  cen ter  as a  ser ies of concent r ic r in gs .  Weber  (1909) ana lyzed the dis t r ibu t ion  of
in dust r ia l loca t ion s as a  funct ion  of the volume of mater ia ls  to be  sh ipped, t he dis t ance
tha t  the goods  had t o be sh ipped, and t he u n it  dis t ance cost  of sh ipp ing; consequ en t ly,
indust r ies become loca ted in par t icu lar  concent r ic zones a round a  cen t ra l city.  Bur gess
(1925) an a lyzed t he dist r ibu t ion  of urba n  land u ses in  Ch icago an d described concent r ic
zones  of both  indust r ia l and r es iden t ia l u ses .  Their  t heory formed  the backdrop  for  ea r ly
studies on the ecology of cr im in a l behavior  and ga ngs (Th rasher , 1927; Shaw, 1929).

In  more modern  use, t he loca t ion  of persons wit h  a  cer t a in  need or  behavior  (the
‘demand’ side) is iden t ified on a  spa t ia l pla ne and p laces a re selected as t o ma ximize value
and m inimize t r avel cost s.  F or exa mple, for a  consu mer  faced with  two ret a il sh ops selling
the sa me pr odu ct , one being closer  but  more expens ive while the other  being fa r ther  but
less expensive, the consu mer  has t o t r ade off the value to be gained a gainst  the increa sed
t ravel t ime r equ ired. In  design ing facilit ies  or p laces of a t t r action  (th e ‘su pp ly’ side), the
dis tance between  each  possible facilit y loca t ion  and the loca t ion  of the releva nt  popula t ion
is  compared to the cost  of loca t in g n ear  the facilit y.  For  exa mple, given  a  dis t r ibu t ion  of
consumers  and their  p ropens ity to spend , such  a  theory a t t empts to loca te the op t imal
placement  of reta il st ores, or , given  the dist r ibut ion  of pa t ient s, the theory at t empt s t o
loca te the opt ima l placemen t  of medica l facilit ies.
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Predic t ing  Locat ions  from a  Dis tribut ion

On e can  a lso rever se the logic.  Given  the dist r ibu t ion  of demand, t he t heory could
be a pp lied to est imate a  cent ra l loca t ion from which t ravel dist ance or  t ime is  min imized. 
On e of the ea r liest  uses of th is logic wa s t ha t  of J ohn  Sn ow, who was in ter ested in  the
causes of cholera  in t he mid-19th  cen tury (Cliff and H agget t , 1988).  He postu lat ed t he
theory th a t  wa ter  was t he major  vector  t r ansm itt ing the cholera  bacter ia.  After
inves t iga t ing water  sources  in  the London  met ropolit an  a rea  and  conclud ing tha t  there was
a  rela t ionsh ip between  contamina ted wa ter  and choler a  cases, he wa s a ble t o confirm his
theory by a n  outbreak of cholera  cases in  the Soho dis t r ict .  By plot t in g t he dis t r ibu t ion  of
the cases a nd lookin g for  wa ter  sources in  the cen ter  of the dist r ibu t ion (essen t ia lly, the
center  of minimum  dista nce; see cha pter 4), he foun d a well on Broad St reet t ha t was, in
fact , cont amina ted by seepage from nea rby sewer s.  Th e well was closed a nd t he epidemic
in  Soho receded. Inciden t ly, in  plot t in g t he in ciden t s on a  map and look in g for  the cen ter  of
the dis t r ibu t ion , Snow applied the same logic t ha t  had been  followed by t he London
Met ropolita n  Police Depa r tment  who had developed t he famous ‘pin’ map in  the 1820s.

Theoret ica lly, th ere is an  opt ima l solut ion  tha t  minim izes t he dist ance between
demand a nd supply (Rush ton, 1979).  However , computa t iona lly, it is  an  a lmost  imposs ible
task  to define, requ ir ing the en umer a t ion  of ever y possible combina t ion .  Consequ en t ly in
pract ice, a pproximate, t hough  sub-opt im al, solu t ion s a re obt a in ed th rough  a  va r iety of
methods (Everet t , 1974, Ch . 4).

Trave l  Dem an d Modeling

A su b-set  of locat ion  theory m odels t he t r avel beh avior  of individua ls.  It  actu a lly is
the converse.  If loca t ion  theory a t t empts to a lloca te pla ces or  sit es in  rela t ion  to bot h  a
su pp ly-side and dem and-side, t r avel demand t heory a t t em pt s t o model h ow ind ividu a ls
t ravel between  places, given a  pa r t icu lar  const ellat ion  of them.  One concept  tha t  has been
frequent ly used for  th is pu rpose is th a t  of the gravity fun ction , a n  applica t ion  of Newton’s
fundamenta l law of a t t r act ion  (Oppenheim, 1980).  In  the or igina l Newton ian  formula t ion ,
th e att ra ction, F, between t wo bodies of respective masses M 1 an d M 2, sepa ra ted by a
dist ance D, will be equa l t o 

   M1 M2

F = g ----------------- (10.1)
     D2

where g is a  const an t  or scalin g factor  wh ich en su res tha t  the equ a t ion  is ba lanced in
ter ms of th e m ea su rem en t  un it s (Oppenheim , 1980).  As we a ll know, of cour se , g is  the
gravita t iona l cons tan t  in  the Newton ian  formula t ion .  The numera tor  of the funct ion  is  the
attraction  t erm (or , a lt erna t ively, the a t t r act ion  of M2 for  M1) wh ile the denomin a tor  of the
equ a t ion, d 2, indica tes tha t  the a t t r act ion  between  the two bod ies fa lls off as a  funct ion  of
their  squared d is t ance. It  is  an  im pedance t erm.
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Soc ia l Applications  o f the  Gravi ty  Concept

The gra vity model ha s been  the bas is of many app lica t ions t o human societies a nd
has been  applied t o social int eract ions sin ce the 19 t h  cen tury.  Ra venstein  (1895) and
Andersson  (1897) applied  the concep t  to the ana lys is  of migra t ion  by a rgu ing tha t  the
tendency t o migra te between  regions is  in versely propor t ion a l t o the squared dis t ance
bet ween  the r egions . Reilly’s ‘law of ret a il gravita t ion’ (1929) applied  the Newt onia n
gra vity model directly an d su ggest ed t ha t  reta il t r avel between  two centers would be
propor t ion a l t o the product  of their  popula t ion s and in versely propor t ion a l t o the square of
the dist ance sepa ra t ing them:

      P i P j

T ij = " ----------------- (10.2)
       Dij

2

where T ij is th e int eraction between center s i an d j, P i an d P j a re t he r espective
popula t ions , D ij is th e dista nce between t hem r aised to th e second power an d " is a
ba lancing cons tan t .  In  the m odel, t he in it ia l popu la t ion, P i, is called a production  while the
second popu la t ion, P j, is called an attraction .  

St ewar t  (1950) and Zipf (1949) applied t he concept  to a  wide var iety of ph enomena
(migr a t ion , freigh t  t r a ffic, excha nge of informat ion) us ing a  sim plified form of the gravity
equ a t ion

      P i P j

T ij = " ----------------- (10.3)
        Dij

where the terms are as in  equa t ion  10.2 bu t  the exponent  of dis t ance is  only 1.  In  doin g so,
they ba sica lly link ed locat ion  theory with  t r avel beh avior  theory.  Given  a  pa r t icula r
pa t t ern  of in teract ion  for  any t ype of goods, service or  human act ivit y, an  opt im al loca t ion
of facilit ies  sh ould  be solvable.  

In t he Stewar t/Zipf fra mework , th e two P’s were both  populat ion sizes and,
therefore, t heir  sums had to be  equa l.  However , in  modern  use, it ’s not  necessa ry for  the
pr oductions a nd a t t r actions t o be iden t ical u n it s (e.g., P i cou ld be popu lat ion  while P j cou ld
be employmen t ).  

The tota l volum e of pr odu ct ions (tr ips) from a  single loca t ion , i, is est ima ted by
summin g over  a ll des t in a t ion  locat ions, j:

T i = K   P i G (P j/D ij) (10.4)
       j

Over time, the concept ha s been genera lized an d applied to ma ny different  types of
t ravel beha vior .  For exam ple, Hu ff (1963) applied t he concept  to reta il t r ade between
zones  in  an  u rban  a rea  using the genera l form of
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      Aj
$

T ij = "  ----------------- (10.5)
     Dij

8

where T ij is  the number  of purchases in  loca t ion  j by r esiden t s of loca t ion  i, Aj is  the
a t t ractiveness of zone j (e.g., squ are foota ge of ret a il space), D ij is the dist ance between
zones i an d j, $ is  the exponent  of S j, and  8 is th e exponent  of dista nce, an d " is  a  cons tan t
(Bossard, 1993).  Dij

-8 is  somet imes  ca lled  an  inverse d istance fun ction.  This is  a  single
constrain t model in  tha t  only t he a t t r activen ess of a  commer cial zone is const ra ined, tha t  is
the sum of a ll a t t r act ion s for  j must  equa l t he tota l a t t r act ion  in  the region .

Again , it  can  be gen er a lized t o all zones by, fir st , est imat ing the t ota l t r ips
gener a ted  from one zone, i, t o another  zone, j,

     P i
D Aj

$

T ij = " ----------------- (10.6)
      Dij 

8

where T ij is t he in ter action  bet ween  two locat ions  (or  zones), P i is  product ions of t r ip s from
loca t ion/zone i, Aj is t he a t t r activeness of locat ion/zone j, Dij is th e dista nce between zones i
an d j, $ is  the exponent  of S j, D is  the exponent  of H i, 8 is th e exponent  of dista nce, an d " is
a  const an t .  

Second, t he t ota l number  of t r ips  genera ted by a  locat ion , i, to a ll des t ina t ions is
obt a in ed  by summin g over  a ll des t in a t ion  locat ions, j:

T i = " P i
D G (Aj

$/D ij 
8) (10.7)

     j

Th is  differ s from the t r adit ion a l gravity fu nct ion  by a llowin g t he exponents of the
pr odu ct ion  from loca t ion  i, the a t t r act ion  from loca t ion  j, an d t he dist ance between  zones t o
var y.  Typica lly, th ese exponents a re ca libra ted on a  kn own sa mple before being applied t o
a  forecas t  sa mple and t he loca t ions a re u su a lly mea su red by zones. Thus, r et a iler s in
decid in g on  the loca t ion  of a  new store can  use th is  type of model t o choose a  sit e loca t ion  to
opt imize t r avel beh avior  of pa t rons ; th ey will, typically, obt a in  da ta  on a ctu a l sh oppin g
t r ips by cu stomers and then  ca libra te the model on  the da ta , est im at in g t he exponents of
a t t r act ion  and dis t ance.  Th e model ca n  then  be used to predict  fu ture shoppin g t r ips if a
facilit y is bu ilt  a t  a  pa r t icula r  loca t ion.  

This type of funct ion  is ca lled a double const ra in t model because the ba lancing
cons tan t , K, has  to be cons t ra ined  by the number  of un it s  in  both  the or igin  and
dest in a t ion  loca t ion s; tha t  is , t he sum of P i over  a ll loca t ion s must  be equa l t o the tota l
number  of product ion s while the sum of P 2 over  a ll loca t ion s must  be equa l t o the tota l
nu mber of at tr actions.  Adjust ment s ar e usua lly required to ha ve the sum  of individua l
product ion s and a t t r act ion s equa l t he tota ls  (usua lly est im ated in dependent ly).
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The equa t ion  can  be gener a lized t o other  types of t r ips a nd differen t  met r ics can  be
subst it u ted for  dis t ance, such  as t r avel t im e, effor t , or  cost  (Isa rd, 1960). F or  exa mple, for
commut ing t r ip s, u sua lly employmen t  is  used  for  a t t r act ions, fr equen t ly sub-d ivided  in to
reta il and non-reta il employment . In  addit ion , for  product ion s, m edia n  household  in come
or  ca r  ownersh ip  percen tage is  used  as an  add it iona l p roduct ion  var iable.  Equa t ion  10.7
can  be genera lized to in clu de any t ype of product ion  or  a t t r act ion  va r ia ble (10.8 and 10.9):

T ij = "1 P i
D "2 Aj

$/D ij 
8 (10.8)

T i = "1 P i
D G ("2 Aj

$/D ij 
8) (10.9)

where T ij is t he n umber  of t r ips  pr oduced by locat ion i t ha t  t ravel t o locat ion j, P i is eith er  a
sin gle va r ia ble associa ted wit h  t r ips produced from a  zon e or  the cross-product  of two or
more var iables  associa ted wit h  t r ips  pr oduced from a  zone, Aj is eit her  a  sin gle var iable
associat ed with  t r ips a t t r acted t o a  zone or  the cross-produ ct  of two or  more var iables
associa ted wit h  t r ips  a t t r acted t o a zone, D ij is  eit her  the dis t ance between  two loca t ion s or
anoth er  var iable m ea su r ing t ravel effor t  (e.g., tr avel t ime, t r avel cost ), D, $, and  8 a r e
exponents of th e r espective ter ms, "1 is a const an t a ssociated with  th e productions t o
ensure tha t  the sum of t r ips produced by a ll zon es equa ls  the tota l n umber  of t r ips for  the
region (usu ally estimat ed independent ly), an d "2 is  a  cons tan t  a ssocia ted  with  the
a t t ract ion s to ensure tha t  the sum of t r ips a t t r acted to a ll zon es equa ls  the tota l n umber  of
t r ips  for  the r egion.  Without  having two cons tan t s in  the equ a t ion , usu a lly conflict ing
est im ates of K will be obt a in ed by ba la ncin g t he equa t ion  aga in st  product ion s or
a t t r act ions.  The summat ion  over a ll dest ina t ion  loca t ions, j (equa t ion  10.9), produces t he
tota l number  of t r ips  from zone i.

In te rv e n in g  Op po rt un it ie s

Stouffer  (1940) modified the sim ple gr avity fu nct ion  by a rgu in g t ha t  the a t t r act ion
bet ween  two locat ions  wa s a  fun ction  not on ly of the character ist ics of the r ela t ive
a t t ractions of two locat ions, bu t  of in ter ven ing opport un it ies bet ween  the loca t ions.  H is
hypothesis “..assumes tha t  ther e is  no necessary rela t ionsh ip bet ween  mobility and
dis tance... t ha t  the number  of persons going a  given  dis t ance is  dir ect ly propor t ion a l t o the
number  of oppor tun it ies a t  tha t  dis t ance and in versely propor t ion a l t o the number  of
int ervening opport un ities”(St ouffer , 1940, p. 846).  This m odel was u sed in  the 1940s to
expla in  in ter sta te and in tercounty m igra t ion  (Br igh t  and Th omas, 1941; Isbell, 1944; Isa rd,
1979).  Usin g the gravity type form ula t ion , we can  wr ite t h is a s:

        Aj
$

T ji = " ----------------- (10.10)
   G(Ak

>)  D ij 
8

where T ji is t he a t t r action  of loca t ion j by r es iden t s of locat ion i, Aj is th e att ra ctiveness of
zone j, Ak  is the a t t r act iveness of a ll other  loca t ions t ha t  a re interm ediate in  d is tance
bet ween  loca t ions  i and j, D ij is th e dista nce between zones i an d j, $ is  the exponent  of S j, >
is  the exponent  of Sk , 8 is th e exponent  of dista nce, an d " is  a  cons tan t . While the
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in ter ven ing oppor tun it ies  a re im plicit  in  equ a t ion 10.5 in  the exponents, $ an d 8, and
coefficien t , K, equa t ion  10.10 makes the in tervenin g oppor tun it ies explicit . The im por tance
of the concept  is  tha t  the in teract ion  between  two loca t ion s becomes a  complex fu nct ion  of
the spa t ia l environment  of nearby a reas and not  ju st  of the two loca t ion s.

Urban  Transp ortation Modeling

This  type of model is  incorpora t ed  as  a forma l s tep  in  the u rban  t r anspor t a t ion
planning pr ocess, implemented by most  regiona l plan ning organ izat ions in  the Un ited
St a tes and elsewh er e (Stopher  and Meybu rg, 1975; Kr ueckeber g and Silvers, 1974; Field
an d MacGregor, 1987).  The step, called trip d istribu tion , is lin ked to a five st ep model. 
F ir st , da ta  a re obta ined on t ravel beh avior  for  a  var iet y of tr ip purposes.  Th is is  usu a lly
done by samplin g househ olds  and a sk ing each m em ber  to keep  a  t r avel dia ry documen t ing
a ll their t r ips over  a  two or  th ree da y period.  Tr ips a re aggregat ed by individua ls and by
households. F requent ly, t r ips by differen t  purposes a re separa ted.  Second, t he volume of
t r ips  pr oduced by and a t t r acted t o zones  (ca lled t r a ffic ana lysis  zones) is est imated, usu a lly
on  the basis  of the number  of households in  the zon e and some in dica tor  of in come or
pr iva te vehicle ownersh ip.  Third , tr ips pr odu ced by each zone are dist r ibut ed t o every
other  zon e usua lly u sin g a  gr avity-t ype funct ion  (equa t ion  10.9).  Tha t  is , t he number  of
t r ips  pr oduced by each or igin  zone and endin g in  ea ch dest ina t ion zone is  est imated by a
gravity model.  The d is t r ibu t ion  is  based  on  t r ip  product ions , t r ip  a t t r act ions , and  t ravel
‘resist ance’ (measu red by t ravel dis t ance or  t r avel t ime).  Four th , zone-to-zone t r ips  a re
a lloca ted by mode of t r avel (car , bus, wa lking, etc); and, fifth , tr ips a re assigned t o
pa r t icula r  rout es by t ravel mode (i.e., bus t r ips  follow differ en t  rout es than  pr ivate veh icle
t r ips ).  The adva ntage of th is process is  tha t  t r ips  are a llocat ed accord ing to or igins,
dest ina t ions, dist ances (or  t r avel t imes ), modes of t r avel and r ou tes.  Since all zones a re
modeled sim ult aneously, a ll  in termedia te dest in a t ion s (i.e ., in terven in g oppor tun it ies) are
incorpora ted into th e model. Chapt ers 11-17 present a  crime tr avel deman d model.

Alternat ive  Dis tance  De cay  Funct ions

One of the pr oblems  with  the t r adit iona l gravity formulat ion  is in t he measu rement
of t r avel resist ance, either  dist ance or  t ime.  For  loca t ions separa ted by sizeable dist ances
in spa ce, th e gra vity formulat ion  can  work p roper ly.  However , as t he dist ance between
loca t ions decreases , t he denomina tor  approaches  in fin ity.  Consequen t ly, an  a lt erna t ive
expr ession for  the in ter action has been  pr oposed which u ses t he nega t ive exponen t ia l
funct ion  (Hägerst rand, 1957; Wilson, 1970).

Aji =  S j
$ e (-"Dij) (10.11)

where Aji is t he a t t r action  of loca t ion j for  res iden t s of locat ion i, S j is th e att ra ctiveness of

loca t ion j, D ij is th e dista nce between locat ions i an d j, $ is  the exponent  of S j, e is th e base

of the n a tura l logar ithm (i.e., 2.7183...), and " is an  empir ica lly-der ived exponent .
Somet imes known as entropy m axim ization , th e lat ter pa rt  of th e equat ion includes a

nega t ive exponent ia l fun ction  wh ich h as a  maximum value of 1 (i.e., e -0 = 1).  This ha s th e
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adva ntage of makin g t he equa t ion  more st able for  in teract ion s between  loca t ion s tha t  a re
close  together .  For example, Cliff and H agget t  (1988) used a  nega t ive exponent ia l gravity-
type model t o descr ibe the diffusion of measles in to the Un ited St a tes from Canada  and
Mexico.  It h as a lso been a rgued t ha t  the negat ive exponent ial funct ion  gener a lly gives a
bet t er  fit t o urban  t ravel pa t t erns, pa r t icu lar ly by au tomobile  (Foot , 1981; Bossa rd, 1993;
NCH RP , 1995).

Other  funct ions h ave also be used t o describe the dist ance decay - negat ive linear ,
normal d is t r ibu t ion , logn ormal d is t r ibu t ion , quadra t ic, Pareto funct ion , square root
exponent ial, an d so for th  (Hagget t  and Arnold, 1965; Taylor , 1970; Eldr idge an d J ones,
1991).  La ter  in  the chapter , we will explor e severa l d ifferen t  mathemat ica l for mula t ion s
for  descr ibin g t he dis t ance decay.  One, in  fact , does not  need to use a  mathemat ica l
funct ion  a t  a ll, bu t  cou ld  empir ica lly descr ibe the d is tance decay from a  la rge da ta  set  and
ut ilize th e described va lues  for  pr edict ions.  The u se of mathemat ica l funct ions h as evolved
out  of both  the Newton ian  t rad it ion  of gravity as  well a s  va r ious  loca t ion  theor ies  which
used t he gra vity funct ion .  A mathemat ica l funct ion  makes  sen se u nder  two condit ions: 1)
if t r avel is  un iform in  a ll d ir ect ions; and 2) a s an  approxima t ion  if t here is  inadequa te dat a
from which  to ca libra te an  empir ica l funct ion .  The fir s t  a ssumpt ion  is  usua lly wrong s ince
ph ysica l geogra ph y (i.e., oceans, r ivers, mounta ins ) as well as  asymmet r ica l st r eet
net works m ake t ravel ea sier  in  some direct ions  than  oth er s.  As we sha ll see below, the
dist ance decay is quit e irr egula r  for  journey to cr ime t r ips a nd would be bet t er  described by
an  empir ica l, ra ther  than  mathemat ica l fu nct ion .

In  sh ort , ther e is a  long hist ory of resea rch on both  the loca t ion  of pla ces a s well a s
the likelih ood of int er action  bet ween  these places, whet her  the in ter action  is fr eigh t
movement , land pr ices or  in dividua l t r avel behavior .  The gr avity m odel a nd va r ia t ion s on
it  have been  used to descr ibe the in teract ion s between  these loca t ion s.

Trave l Be h av io r of Crim in als

Jou rney  to  Cr ime Trips

Th e a pp licat ion of tr avel behavior t heory to cr ime h as a  sizeable h ist ory a s well. 
The ana lysis  of dis t ance for jour ney to cr ime t r ips  wa s a pp lied in  the 1930s by White
(1932), who noted t ha t  pr oper ty cr ime offender s gener a lly t r aveled far ther  dist ances t han
offender s commit t ing cr imes against  people, and by Lot t ier  (1938), who an a lyzed t he r a t io
of cha in s tore bur gla r ies to the number  of cha in s tores by zone in Det roit.  Turner  (1969)
ana lyzed delinqu en cy beh avior  by a  dis t ance decay t ravel fun ction sh owing h ow more cr ime
t r ips  ten d t o be close  to th e offender ’s h ome wit h  the frequ en cy dropping off with  dis t ance. 
Ph illips (1980) is, apparen t ly, th e firs t  to use t he term journey to crim e is describing the
t ravel dist ances t ha t  offenders m ake t hough  Har r ies  (1980) noted t ha t  the a ver age
dis tance t r aveled has evolved by t ha t  t im e in to an  ana logy wit h  the journey t o work
st a t ist ic.

Rh odes and Con ly (1981) expanded on the concep t  of a crim inal com m ute and
sh owed h ow robbery, bur gla ry an d r ape pa t t erns in  the Dist r ict  of Colum bia followed a
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dis tance decay pa t t er n .  LeBea u  (1987a ) an a lyzed t ravel dis t ances of rape offender s in  Sa n
Diego by vict im-offender  relat ionsh ips a nd by met hod of appr oach .  Boggs (1965) applied
the in ter ven ing opport un it ies model in  ana lyzing t he dist r ibu t ion  of crim es by a rea  in
rela t ion  to th e dist r ibu t ion  of offender s.  Ot her  em pir ical descrip t ions of journey to cr ime
dis tances  and other  t r avel behavior  parameter s have been  studied by Blumin  (1973),
Cu r t is  (1974), Repet to (1974), Pyle (1974), Capone and Nich ols  1975), Renger t  (1975),
Sm ith  (1976), LeBeau  (1987b), an d Canter  and La rkin  (1993).  It h as gener a lly been
accep ted tha t  proper ty cr im e t r ips a re lon ger  than  persona l cr im e t r ips (LeBeau , 1987a),
though except ions have been noted (Turner , 1969).   Also, it  would be expected t ha t
average t r ip  dis t ances will va ry by a  number  of factors: cr im e type; method of opera t ion ;
t im e of day; a nd, even , t he va lu e of the proper ty r ea lized (Ca pone and Nich ols , 1975).

Mode lin g th e  Offe n de r Se arc h  Area

Concept ua l work on t he t ype of model h ave been  made by Br an t ingham and
Brant ingham (1981) who ana lyzed the geom etry of crim e and concept ua lized a  crim ina l
sea rch  area , a geogra ph ica l ar ea  modified by th e spa t ial dist r ibut ion  of poten t ial offender s
and poten t ia l t a rget s, t he awareness spaces of poten t ia l offenders, a nd the exch ange of
in format ion  between  poten t ia l offenders .  In  th is  sense, their  formula t ion  is  simila r  to tha t
of Stouffer  (1940), who descr ibed in tervenin g oppor tun it ies, t hough  their ’s is  a  behaviora l
fra mework .  An import an t concept developed by th e Bra nt ingha m’s is th at  of decreased
cr imina l act ivity near  to an  offender ’s  home base, a  sor t  of a  sa fety a rea  a round  their  near
neighborhood.  P resumably, offenders, pa r t icu la r ly those commit t in g proper ty cr im es, go a
lit t le wa y from their  home ba se so as t o decrea se the likelih ood t ha t  they will get  cau ght .
Th is was n oted by Turner  (1969) in  h is s tudy of delin qu en cy in P hiladelph ia .  Thus, t he
Brant in gh am’s postu la ted tha t  there would  be a  small sa fety a rea  (or  ‘buffer ’ zon e) of
relat ively lit t le offender  act ivity near  to the offender ’s ba se loca t ion ; beyond t ha t  zone,
however , t hey postu la ted tha t  the number  of cr im e t r ips would  decrease accordin g t o a
dis tance decay m odel (t he exact  mathemat ica l for m was never  specified, h owever ).

Cr im e t r ips may n ot  even  begin  a t  an  offender ’s residence.  Rout in e act ivit y t heory
(Cohen and F elson , 1979; 1981) su ggest s t ha t  cr ime opport unities a ppea r  in t he act ivities
of everyday life.  The rout in e pa t t erns of work, shoppin g, and leisure a ffect  the convergence
in  t ime a nd p lace of would  be offen ders, su it able t a rget s, a nd a bsen ce of gua rdia ns.  Many
cr imes  may occur  while an  offender  is t r aveling from one act ivity t o another .  Thu s,
modeling cr ime t r ips  as if they a re r eferen ced r ela t ive to a r esidence is not n ecessa r ily
going t o lead to bet t er  predict ion .

Th e m athem at ics of journey t o cr ime h as been  modeled by Ren ger t  (1981) usin g a
modified gener a l opport un it ies model:

P ij =   K U i Vj f(D ij) (10.12)

where P ij is the pr obability of an  offender  in loca t ion  (or  zone) i committ ing an  offense a t
loca t ion j, U i is a m easu re of the number  of cr ime t r ips pr odu ced a t  loca t ion  i (wha t  Renger t
called em issiveness), Vj is  a  measure of the number  of crim e ta rget s (a t t r act iveness) a t
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loca t ion  j, a nd f(D ij) is a n  unspecified fun ction of the cost  or effor t  expended in  t r aveling
from loca t ion  i to loca t ion  j (dist ance, time, cost ).   He did n ot  t ry to oper a t iona lize eith er
the production side or t he a t t r action side.  Never theless, concept ua lly, a cr ime t r ip would
be expected to involve both  elem en ts a s well a s t he cost  of the t r ip.

In  sh ort , ther e has been  a  grea t  dea l of res ea rch on the t r avel beh avior  of crim ina ls
in comm itting acts a s well as a  nu mber of sta tistical form ulat ions.

P re dic tin g th e  Loca tio n  of Se rial Offen de rs

The journey to cr ime formulat ion , as in  equa t ion  10.9, has been  used t o est ima te the
origin  locat ion  of a  ser ia l offen der  ba sed on the dist r ibu t ion  of crim e inciden t s.  Th e logic is
to plot  the dis t r ibu t ion  of the in ciden t s and then  use a  proper ty of t ha t  dis t r ibu t ion  to
est im ate a  likely or igin  loca t ion  for  the offender .  Inspect in g a  pa t t ern  of cr im es for  a
cen t ra l loca t ion  is  an  in tu it ive idea  tha t  police depar tments  have used  for  a  long t ime.  The
dis t r ibu t ion  of inciden t s describes a n  activit y area  by an  offender , who lives somewh er e in
th e center  of th e distr ibut ion. It is a sam ple from the offender ’s  act ivity space.  Using the
Brant ingham’s t erminology, th ere is a s earch  area  by an  offender  with in wh ich  the cr imes
are committ ed; most likely, the offender  a lso lives with in t he sea rch  area .

For  example, Canter  (1994) shows how the a rea  defin ed by the dis t r ibu t ion  of the
‘J ack the Ripper ’ murders in  the east  end of Lon don in  the 1880s in clu ded the key suspect s
in  the case (though  the case was never  solved).  Kin d (1987) ana lyzed the in ciden t  loca t ion s
of th e ‘York shire Ripper’ who comm itted th irteen mu rders a nd seven at tem pted mu rders in
nor theast  England in  the lat e 1970s and ea r ly 1980s.  Kind a pplied t wo differen t
geograph ical cr it er ia  to est imate t he r es iden t ia l loca t ion of th e offender .  Fir st , he
est im ated the cen ter  of min im um dis tance. Second, on  the assumpt ion  tha t  the loca t ion s of
the murders and a t t empted murders tha t  were commit ted la te a t  n igh t  were closer  to the
offender ’s residence, h e gr aphed the t im e of the offense on the Y axis aga in st  the month  of
the yea r  (ta ken  as a  pr oxy for length  of da y) on  the X axis  and p lott ed a  t r en d lin e t h rough
the da ta  to account  for  sea sona lity.  Both  the cen ter  of minim um dist ance and t he murder s
commit ted  a t  a la ter  t ime than  the t r end  line poin ted  towards the Leeds/Bradford  a rea ,
very close to wh ere the offen der  actua lly lived (in  Br adford).

R os sm o  Mo de l

Rossmo (1993; 1995) has adapted loca t ion  theory, pa r t icu la r ly t r avel behavior
modeling, to ser ia l offenders.  In  a  ser ies of papers (Rossmo, 1993a ; 1993b; 1995; 1997) he
out lined a  mathem at ical a pproach to iden t ifying the home base locat ion  of a  ser ia l
offender , given  the d is t ribu t ion  of t he inciden t s.  The ma themat ics  rep resen t  a  formula t ion
of the Bran t ingham and  Bran t ingham (1981) sea rch  a rea  model, d iscussed  above in  which
the sea rch behavior  of an  offender  is seen  as followin g a  dis t ance decay function wit h
decreased act ivit y n ear  the offender ’s home base.  H e has produced exa mples showin g h ow
the model ca n  be applied to ser ia l offenders (Rossmo, 1993a ; 1993b; 1997).
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The model ha s four  steps (what  he called crim ina l geographic targeting):

1. F ir st , a  rectangu la r  study a rea  is  defin ed tha t  extends beyon d the a rea  of the
inciden t s committ ed by th e ser ial offender .  The avera ge dista nce between
poin t s is  t aken  in  both  the Y and X dir ect ion .  H a lf t he Y in ter -poin t  dis t ance
is a dded to th e m aximum Y value and subt racted from t he m inimum Y
value.  Ha lf the X in ter -poin t  d is tance is  added  to the maximum X va lue and
su bt racted from t he minim um X value.   These a re bas ed on pr ojected
coordina tes; presum ably, th e directions would have to be adjusted if
spher ica l coor din a tes were used.  The rectangu la r  study defin es a  gr id  from
which column s an d rows can  be defined.

2. For  each  grid cell, the Manha t tan  dist ance to each  inciden t  loca t ion  is taken
(see chapter  3 for  defin it ion ).

3. For ea ch  Man ha t tan  distance from a gr id cell to an  incident  loca t ion , MDij,
one of two funct ions is evalu a ted:

A. If the Man ha t tan  distance, MD ij, is less than  a  specified buffer  zon e
radius, B, then

         T
P ij =  A {k[ (1-N)(Bg-f) / (2B - | xi - xc|  + | yi - yc| )g] } (10.13)
        c=1

where P ij is t he r esu ltan t  of offender  in ter action for  gr id cell, i; c is t he
in ciden t  number , summin g t o T; N = 0; k is a n  empir ica lly det ermined
cons tan t ; g is  an  empir ica lly determined  exponen t ; and  f is  an
empir ica lly det ermined exponent .

Th e Gr eek  let t er , A, is the product  sign , indica t in g t ha t  the resu lt s for
each grid cell-inciden t  distance, MD ij, a r e m ultiplied  together  across
all incidents, c.  This equa tion r educes to

           T
P ij  =   A {k(1-0)(Bg-f) / (2B - | xi - xc|  + | yi - yc| )g } (10.14)
           c=1

           T       KBg-f

P ij  =   A ----------------------------------   (10.15)
         c=1     (2B - | xi - xc|  + | yi - yc| )g

Within  the buffer  region, the  funct ion  is  the ra t io of a  constant ,  k ,
t im es the radiu s of the bu ffer , B, r a ised to another  constan t  (g-f),
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divided by the difference between  the dia meter  of the cir cle (2B) and
the Man ha t tan  distance, MD ij, ra ised to a const an t, g.  This is a non-
linear funct ion .

B. If the Man ha t tan  distance, MD ij, is grea ter  than  a  specified buffer
zone radius, B, then

          T
P ij  =  A {k [ N / (| xi - xc|  + | yi - yc| )f } (10.16)
         c=1

where P ij is t he r esu lt an t  of offender  in ter action  for  gr id cell, i, and
in ciden t  loca t ion , j; c is  the in ciden t  number , summin g t o T; N = 1; k  is
an  empir ica lly det ermined const an t  (the sa me as in  equa t ion  10.15
above); an d f is a n  em pir ically deter mined exponen t  (th e same a s in
equa t ion  10.15 above).

Again , the Gr eek  let t er , A, indicates tha t  the r esu lt s for  each gr id cell-
inciden t  distance, MD ij, a re m ult iplied t ogether  across a ll inciden t s, c. 
This equat ion r educes to

           T
P ij  =   A { k [ 1/(| xi - xc|  + | yi - yc| )f } (10.17)
          c=1

           T k
P ij  =   A { -------------------------------- } (10.18)
          c=1 (| xi - xc|  + | yi - yc| )f

Outside of the buffer  region , th e funct ion  is a const an t , k, divided by
the dista nce, MD ij, r a ised to an  exponent , f.  It  is  an  in verse dis t ance
funct ion  and d rops off r ap id ly with  d is tance

4. F ina lly, for  each  grid cell, i, the funct ions evalu a ted in s t ep 3 above ar e
sum med over all incidents.

For  bot h  the ‘wit h in  bu ffer  zon e’ (near  to home ba se) and ‘out side bu ffer  zon e’ (far
from home base) functions, t he coefficien t , k, a nd exponen ts, f and g, a re em pir ically
deter mined.  Though  he doesn ’t  discuss h ow these a re calcula ted, they a re presumably
est imated from a  sa mple of known offender  locat ions wher e t he dist ance to ea ch in ciden t  is
known (e.g., ar res t  records ).  

Th e r esu lt  is a  su r face m odel in dica t ing a  likelih ood of th e offender  res idin g a t  tha t
loca t ion.  H e describes it  as a  pr obabilit y su r face, bu t  it  is a ctu a lly a  density su r face.  S ince
the pr obability of int eract ion  between  any one grid cell, i, and a ny one inciden t , j, cannot  be
grea ter  than  1, the su r face actua lly ind ica tes  the p roduct  of ind ividua l likelihoods tha t  the



10.12

offender  uses t ha t  locat ion  as t he home base. To be a n  actu a l pr obability function, it  would
have to be re-sca led so tha t  the su m of the grid cells was equa l to 1.

The second function - ‘out side t he bu ffer  zone’ (equa t ion  10.16) is a  class ic gravity
funct ion , s imila r  to equa t ion  10.5 excep t  there is  no a t t r act ion  defin it ion .  It  is  the d is tance
decay par t  of the gravity function.  The firs t  fun ction, equ a t ion  10.13, is  an  increasin g
curvilinea r  funct ion  designed  to model the area  of decrea sed a ct ivity near  the offender ’s
home bas e.

S tr en gt h s a n d  w ea k n esses of th e Ros sm o m od el

The Rossmo model h as both  st rengt hs and weaknesses.  F ir st , t he model h as some
theoret ica l basis  u t ilizin g t he Br an t in gh am and Br an t in gh am (1981) framework for  an
offender sear ch  ar ea a s well as  the ma themat ics of the gravity model an d dist inguish es two
types of t r avel beha vior  - near  to home and far ther  from home.  Second, th e model does
represen t  a  sys temat ic a pproach  towards iden t ifyin g a  likely home base loca t ion  for  an
offender .  By eva lua t ing each  gr id  cell in  the s tudy a rea , an  independen t  es t imate of the
likelihood is  obta ined, wh ich can  then  be in tegra ted in to a cont inuous  su r face wit h  an
int erpola t ion  gra ph ics r ou t ine.

Th er e a re problems with  the par t icula r  formula t ion, h owever .  Fir st , the exclusive
use of Manha t tan  dis t ances is  quest ion able.  Unless the study a rea  has a  st reet  network
tha t  follows a  un iform grid, measu r ing dist ances h or izonta lly and vert ica lly can  lead to
overes t ima t ion  of t r avel d is t ances ; fu r ther , t he more the layou t  differ s  from a  nor th -sou th
and east -west  orien ta t ion, t he gr ea ter  the dist ort ion.  S ince many urba n  area s do not  have
a  un iform grid st reet  layout , th e method will necessa r ily lead  to overes t ima t ion  of t r avel
dista nces in places where there ar e diagona l or irr egular  str eets.1

Second, t he u se  of a  pr oduct t er m, A, complica tes  the mathemat ics .  Tha t  is , the
technique eva lua tes t he dist ance from a  pa r t icu lar  grid cell, i, to a  pa r t icu lar  inciden t
loca t ion , j.  It t hen  m ultiplies th is result by all oth er results.  Since the P values are
actua lly den sit ies, which  can  be grea ter  than  1.0, the pr ocess, if st r ict ly applied, would be a
compoun ding of pr obabilit ies with  overes t ima t ion  of the likelihood for  grid cells close t o
inciden t  loca t ions  and underes t imat ion  of the likelihood  for  gr id  cells  fa r ther  away.  In  the
descript ion  of the method, however, Rossm o actua lly ment ions su mming the terms.  Thu s,
the subst itu t ion of a summat ion s ign , G, for t he product sign would help th e mat hema tics.

A th ir d problem is  in  the dis t ance decay fu nct ion  (equa t ion  10.16).  The use of an
inver se  dis t ance ter m has p roblems a s t he dist ance bet ween  the gr id cell loca t ion, i, a nd
the inciden t  loca t ion , j, decreases.  For  some t ypes of cr imes , th ere will be lit t le or  no buffer
zone aroun d t he offender ’s h ome ba se (e.g., ra pes by acqua in tances).  Consequ en t ly, the
buffer  zon e radiu s, B, would  approach  0.  H owever , t h is  would  cause the model t o become
unst able s ince the inver se  dis t ance ter m will a pp roach  infinit y. 

Four th , the u se of a  mathem at ical function to descr ibe t he dist ance decay, while
easy t o defin e, probably oversim plifies actua l t r avel behavior .  A m athemat ica l fu nct ion  to
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describe dist ance decay is an  appr oximat ion  to actua l tr avel beha vior .  It a ssu mes t ha t
t ravel is equa lly likely in  each direction , tha t  t r avel dis t ance is un iformly easy (or  difficult )
in  each  dir ect ion , a nd tha t , s im ila r ly, oppor tun it ies a re un ifor mly dis t r ibu ted.  F or  most
urban  areas, these condit ions would not  be tr ue.  Few cit ies form a  per fect  grid (Salt  Lak e
Cit y is, of cou rse, a n  except ion ), t hough  most  cit ies have sect ion s tha t  a re gr ided.  Both
ph ysica l geogra ph y limit  t r avel in cert a in d irections a s does the h istor ica l st r eet  st ructure,
which  is  often  der ived from ear lier  communit ies.  A m athemat ica l fu nct ion  does not
consider th is str uctu re, but  ra th er assu mes th at  th e ‘impedance’ in a ll directions is
un iform.  

This  la t t er  cr it icism, of cou rse, would  be t rue for  a ll mathemat ica l for mula t ion s of
t ravel dis t ance.  There a re cor rections t ha t  can  be m ade to adjus t  for  th is.  F or exa mple, in
the u rba n  t ravel dem and t ype model, t r ip d ist r ibu t ion bet ween  loca t ions  is est imated by a
gr avity m odel, bu t  then  the dis t r ibu ted t r ips a re const ra in ed by, fir st , t he tota l n umber  of
t r ips  in  the r egion (est imated sepa ra tely), second , by mode of t r avel (bus v. s ingle dr iver  v.
dr ivers plu s passengers v. wa lk , et c.), and, t h ir d, by t he route st ructure upon which  the
t r ips a re event ua lly assigned (Kru eckeber g an d Silvers, 1974;  St oph er  and Meybur g, 1975;
Field an d Ma cGregor , 1987).  Calibra t ion  a t  a ll st ages aga ins t  kn own da ta  set s en su res
tha t  the coefficien t s a nd exponen ts fit  ‘r ea l world ’ da ta  as closely as possible. It  would  take
these t ypes of modifica t ions t o make t he t r avel dist r ibut ion  type of model post u lat ed by
Rossmo and others be more rea list ic.

Fifth , th e model imposes m athemat ica l rigidity on  the da ta .  While th ere a re two
differen t  funct ions  tha t  cou ld  vary from p lace to p lace, the pa r t icu la r  type of d is tance decay
funct ion  migh t  a lso va ry.  Specifying a  s t r ict  form for  the two equa t ions  limit s  the
flexibilit y of a pplyin g t he model t o differen t  types of cr im e or  to pla ces where the dis t ance
decay does not  follow the form specified by Rossmo.

A sixth  problem is tha t opport un ities for comm itting crimes - th e att ra ctiveness of
loca t ions , a re never  measured .  Tha t  is , there is  no enumera t ion  of the oppor tun it ies  tha t
would  exis t  for  an  offender  nor  is  there an  a t t empt  to measure the s t rength  of th is
a t t r act ion .  Ins tead, th e sea rch  area  is inferr ed st r ict ly from the dist r ibut ion  of inciden t s.
Because t he dist r ibut ion  of offender  opport unities would be expected t o var y from place to
pla ce, t he model would  need to be  re-ca libra ted a t  each  loca t ion . In  th is  sense, both  the
Canter  model and m y journey to cr ime m odel (both  descr ibed below) also share t h is
weakn ess.  It  is un der st anda ble in  tha t  vict im/ta rget oppor tun ities a re difficu lt t o define a
priori sin ce they ca n  be in terpreted differen t ly by individua ls .  Never theless, a  more
complete theory of jou rney t o cr im e behavior  would  have to in corpora te some measure of
oppor tun it ies , a  poin t  t ha t  both  Bran t ingham and Bran t ingham (1981) and Renger t  (1981)
have ma de.

F in a lly, the ‘buffer  zon e’ concep t  is  bu t  one in terpreta t ion  of the tendency of many
cr imes  not  to be commit ted  close to the home loca t ion .  There a re other  in terp reta t ions  tha t
a re applicable.  F or  exa mple, t he dis t r ibu t ion  of cr im e oppor tun it ies is  often  not  close to the
home locat ion , either .  Many cr imes occur  in  commer cial a rea s.  In  most  Amer ican  cit ies,
residen t ial a reas a re not  loca ted in commercial a reas.  Thu s, there will usu a lly be a
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dis tance between  a  residen t ia l loca t ion  and a  nearby cr im e oppor tun it y.  Th is  does not
imply anyth ing about  a  ‘sa fety zone’ for  the offender  bu t , ins tead , may illus t ra te the
dis t r ibu t ion  of the oppor tun it ies.  If we could m ap t he t r avel dis t ance of, sa y, sh oppin g
t r ips , we would probably find a  sim ilar  dis t r ibu t ion  to th a t  seen  in  most  of journey to cr ime
st udies (and illu st ra ted below).  

The concept  of a  ‘bu ffer  zone’ is a  hypothesis, n ot a  cert a in ty.  The language of it  is
so appea ling t ha t  many people believe it  to be t rue.  But , t o demonst ra te the exis tence of a
‘buffer  zone’ would require in terviewing offender s (or  offender s wh o have been a r rest ed)
and dem onst ra t ing tha t  they did not commit crim es n ear  their r esiden ce even t hough t here
were opport un ities (i.e., th ey va lued  sa fety over oppor tun ity).  To my knowledge, there has
not  been a  st udy tha t  dem onst ra ted t h is yet. Otherwise, one cannot  dist ingu ish  between
the ‘buffer  zone’ hypothesis a nd t he dist r ibut ion  of available opport un ities.  They ma y very
well be t he same t h ing.

Ca n te r Mo de l

Canter ’s group in  Liverpool (Canter  and Tagg, 1975; Can ter  and La rkin , 1993;
Canter  and Snook, 1999; Ca nter , Coffey a nd Hunt ley, 2000) have modified the dis t ance
decay fu nct ion  for  journey t o cr im e t r ips by u sin g a  nega t ive exponent ia l t erm, instead of
the inver se dis t ance.  Their  Dragn et progr am uses the nega t ive exponent ia l fu nct ion

Y = " e (-$ Dij/ P) (10.19)

wh er e Y is the likelih ood of an  offender  t r avelin g a  certa in  dis t ance to comm it  a  crim e,, D ij

is t he dist ance (from  a  home ba se loca t ion t o an  inciden t  sit e), " is a n  a rbit ra ry const an t , $

is  the coefficien t  of the dis t ance (a nd, h ence, an  exponent  of e), P  is  a  normaliza t ion

const an t, and e is t he ba se of the n a tura l logar ithm.  The model is similar  to equa t ion  10.11

except , lik e Rossmo, it  does not  in clu de the a t t r act iveness of the loca t ion .

Us ing the logic tha t  most  cr imes  a re committ ed n ear  the offender ’s h ome bas e,
Ca nter , Coffey and H unt ley (2000) use a  five st ep pr ocess t o est imate a  sea rch s t ra tegy:

1. The st udy ar ea  is defined by a r ectangle tha t  is 20% lar ger in  a rea  than  tha t
defin ed by t he min im um and maximum X/Y poin t s.  A gr id  cell st ructure of
13, 300 cells is  im posed over  the rectangle.  E ach  gr id  cell is  a  reference
locat ion , i.

2. A decay coefficient  is selected.  In  equa t ion  10.19, th is would be th e

coefficien t , $, for  the dist ance ter m, D ij, both  of wh ich  are exponents of e . 

Un like Rossm o, Can ter  uses a  ser ies of decay coefficient s from 0.1 to 10 to
est im ate the sensit ivit y of t he model. The equa t ion  in dica tes the likelihood
wit h  which  any loca t ion  is  likely to be  the home base of the offender  based on
one inciden t . 
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3. Because d ifferen t  offender s  have d ifferen t  sea rch  a reas, t he measu red
dis tances for each cell a re divided by a  norm aliza t ion coefficien t , P , tha t
adjus t s a ll offenses t o a  compa rable ra nge.  Can ter  uses t wo differen t  types
of normaliza t ion  funct ion : 1) mean  int er -poin t  dist ance between  a ll offenses
(across a  group  of offenders ); and  2) the QRange, which  is  an  index tha t
t akes  int o account  asymmet ry in  the or ient a t ion  of the inciden t s.

4. For  each  reference cell, i, t he dis t ance between  each  gr id  cell and each
incident locat ion is evalua ted with  th e fun ction a nd t he sta nda rdized
likelihoods  a re summed to yield a n  est imate of locat ion  poten t ia l.

5. A search cost index is defined by the pr oport ion  of the st udy ar ea  tha t  has t o
be sear ched to find t he offender.  By ca libra t ing th e model agains t  kn own
cases, an  est ima te of sea rch  efficiency is obta ined .

Addit iona l mod ifica t ions can  be added  to the funct ions to make them more flexible
(Can ter , Coffey and Hun t ley, 2000).  For  example, ‘s t eps’ a r e d is t ances  nea r  t o home where
offender s  a re not  likely to act  wh ile ‘p la t eaus’ a r e const an t  dis t ances  nea r  t o home where
there is  the h ighest  likelihood of act in g.  For  exa mple, Canter  and Larkin  (1993) found an
area  a round ser ial offender s’ homes of about  0.61 mile in  radius with in wh ich  they were
less likely to comm it crimes.

Ca nter  and Snook (1999) pr ovide es t imates  of the sea rch cost  (or  efficiency)
associat ed with  var ious dist ance coefficient s.  For example, with  the kn own home bas e
loca t ions  of 32 burgla r s, a  $ of 1.0 yielded a m ean  sea rch  cost  of 18.06%; tha t  is, on  avera ge,
only 18.06% of th e study a rea  had t o be sea rched  to find t he loca t ion  of 32 bu rglar s in  the
ca libra t ion  sample.  Clear ly, for  some of them, a  la rger  a rea  had to be  searched while for
others a  smaller  a rea ; the average was 18.06%.  Conversely, t he mean  search  cost  in dex for
24 r apis t s was 21.10% and for  37 m urderer s 28.28%.  They fur ther  explored the m argina l
increase in  loca t ing offender s  by increasing the percen tage of t he s tudy a rea  tha t  had to be
sea rched.  They found for  their t h ree sa mples (burgla ry, rape, homicide) th a t  more than
ha lf the offender s could be loca ted with in 15% of the area  sea rched.

The Ca nter  model is differen t  from the Rossmo model is tha t  it  suggest s a  sea rch
st ra tegy by t he police for  a  ser ia l offender  ra ther  than  a  pa r t icula r  loca t ion.  Th e st ren gth
of it  is  to indica t e how na r row an  a rea  the police shou ld  concen t r a t e on  in  order  t o op timize
find ing an  offender .  Clea r ly, in  most  cases , only a  sm all a rea  needs be sea rched. 

S tr en gt h s a n d  w ea k n esses of th e Ca n ter  m od el

The model h as both  st rengt hs and weaknesses.  F ir st , t he model provides a  sea rch
st ra tegy for  law en forcemen t .  By exa min ing wh at  type of fun ction  bes t  fits  a  cert a in  type
of cr ime, police can  ta rget t heir search  effor t s m ore efficient ly.  The m odel is rela t ively easy
to implemen t  and is pr act ica l.  Second, th e mathemat ica l formulat ion  is st able.  Un like the
inver se dist ance funct ion  in t he Rossm o model, equa t ion  10.19 will not  have problems
associa ted wit h  dis t ances tha t  a re close to 0.  Fur ther , t he model does provide a  sea rch
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st ra tegy for  ident ifying an  offender .  It is a  useful tool for  law en forcement  officers,
pa r t icu lar ly as t hey frame a  sea rch  for  a  ser ial offender .

There are a lso weakn esses  to the model.  First , it  lacks a  theoret ica l bas is. Can ter ’s
resea rch h as p rovided a  grea t  dea l in  ter ms of underst andin g the activit y spaces of ser ia l
offender s (Can ter  and La rkin , 1993; Can ter  and Gr egory, 1994; Can ter , 1994; Hodge an d
Canter , 2000).  H owever , t he empir ica l m odel u sed is  st r ict ly pragm at ic.  Second,
mathemat ica lly, it  imposes t he negat ive exponent ial funct ion  with out  consider ing other
dist ance decay models.    In t he Dragn et pr ogra m, th e decay funct ion  is a s t r ing of 20
number s so th a t , in theory, a ny function can  be explored.  However , the defau lt  is a
nega t ive exponent ia l. The nega t ive exponent ia l h as been  used in  many t ravel behavior
studies (Foot , 1981; Bossard, 1993), bu t  it  does not  a lways  produce the best  fit .  La ter  on,
I’ll sh ow exam ples of t r avel beha vior  which  sh ow a  dist inctly non-monotonic funct ion , even
beyond a  home bas e ‘buffer  zone’.  While the model can  be adapt ed t o be more flexible by
differen t  exponents and in clu din g s teps and pla teaus, for  exa mple, it  is  st ill t ied to the
nega t ive exponen t ia l form . Thus, t he m odel might  work in  some loca t ions, bu t  may fa il in
others ; a u ser  can’t  eas ily adjust  the model to make it  fit n ew da ta .

Th ird, t he coefficien t  of the n ega t ive exponent ia l, ",  is defined ar bitr ar ily.  In t he
Dragn et pr ogra m, it  is usua lly set  as 0.5.  While th is ensu res t ha t  the resu lt n ever exceed
1.0 for  any one inciden t , there is  a  limit  on  the loca t ion  poten t ia l summat ion  s ince the tota l
poten t ia l is a  fun ction  of the n umber  of inciden t s (i.e., it  will be h igher  for  more inciden t s). 
Thus, the use of " ends u p being a rbitr a ry.  It  would have been bet t er  if the coefficient
were ca libra ted a gainst  a  kn own sa mple.

Four th , a nd fin a lly, a lso sim ila r  to the Rossmo model (a nd to my J tc model below),
cr imina l oppor tun it ies  (or  a t t r act ions ) a re never  measured , bu t  a re in fer red  from the
pa t t er n  of crim e inciden t s. As a  pr agmat ic tool for in forming a  police sea rch, one could
argue t ha t  th is is not im port an t .  However , in  a  differen t  loca t ion , th e dist ance coefficient
is liable to differ  as is t he sea rch  cost  index.  It  would need t o be re-ca libra ted ea ch  t ime.

Never theless, t he Ca nter  model is a  useful t ool for police depar tmen t  and can  help
shape a  sea rch  st ra tegy.  I t  is  differen t  from the other  loca t ion  models  in  tha t  it  is  not
focused  so much  on  the bes t  p red ict ion  for  a  loca t ion  of an  offender  (though  the summat ion
discussed a bove in  st ep 4 can  yield tha t ) as it  does in  defin ing where the sea rch  sh ould be
optimized.

Ge o gra ph ic  P ro fi li ng

J ourney t o cr im e est im at ion  should  be dis t in gu ished from geographical profiling. 
Geograph ical profiling involves u nderst andin g the geogra ph ical sea rch pa t t er n  of crim ina ls
in  rela t ion  to the spa t ia l d is t r ibu t ion  of poten t ia l offenders  and poten t ia l t a rget s , the
awa ren ess spa ces of poten t ia l offen ders in cluding the labelin g of ‘good’ ta rget s a nd cr ime
areas, a nd the in terchange of in format ion  between  poten t ia l offenders who may m odify
their  awareness space (Br an t in gh am and Br an t in gh am, 1981).  Accordin g t o Rossmo:
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 “...Geogra ph ic pr ofiling focuses on t he pr obable spa t ial behaviour  of the offender
with in  the con text  of the loca t ions  of, and  the spa t ia l r ela t ionsh ips between , the
var ious crime sites.  A psychologica l profile pr ovides in sight s in to an  offender ’s
likely mot iva t ion , beha viour  and lifest yle, an d is t herefore direct ly connected t o
h is/her  spa t ial act ivity.  Psychologica l an d geogra ph ic pr ofiles th us a ct  in t andem  to
help invest igators  develop a  picture of the per son  responsible for  the crim es in
qu est ion” (Rossmo, 1997).  

In  other words , geogra ph ic profiling is a framework for  un der st anding how an
offender  t r averses a n  a rea  in sea rch ing for  vict ims  or  t a rgets ; th is, of necessit y, involves
under st anding th e social environment  of an  a rea , th e way th a t  the offender  under st ands
th is environment  (the ‘cognit ive map’) as well as  the offender ’s m ot ives.

On  the oth er  hand, journey to cr ime es t imat ion  follows a  much s impler  logic
in volving t he dis t ance dim ension  of the spa t ia l pa t t ern in g of a  cr im in a l. It  is  a  method
a imed  a t  est ima t ing the dist ance tha t  ser ial offender s will t r avel to commit a  cr ime a nd, by
implicat ion, the likely locat ion from which t hey star ted th eir crime ‘tr ip’.  In short,  it  is a
st r ict ly st a t ist ica l appr oach  to est ima t ing the residen t ial whereabouts of an  offender
compa red to un dersta nding the dyna mics of serial offenders.  

It  remain s an  empir ica l quest ion  whether  a  conceptua l fr amework, such  as
geographic profiling, can predict  bet ter  than a  s t r ict ly s ta t is t ica l framework. 
Underst andin g of a phen omena , su ch a s ser ia l murders, ser ia l rapis t s, a nd so fort h , is a n
impor tan t  r esea rch  a rea .  We seek  more than  jus t  st a t is t ica l p red ict ion  in  bu ild ing a
kn owledge base.  H owever, it doesn ’t  necessa r ily follow tha t  under st anding produces bet t er
pr edictions.  In  many area s of human activit y, st r ictly st a t ist ical m odels a re bet t er  in
predict in g t han  expla na tory m odels .  I  will r etu rn  to th is  poin t  la t er  in  the sect ion .

Th e  Cr i m eS t a t  J o u rn e y  to  Crim e  Ro u tin e

The journey to cr ime (J t c) rou t ine is a  diagnost ic designed  to a id police depa r tments
in  their  in vest iga t ion s of ser ia l offenders.  The a im  is  to est im ate the likelihood tha t  a
ser ial offender  lives at  any par t icu lar  loca t ion .  Using th e loca t ion  of inciden t s committ ed
by the ser ia l offen der , the program makes st a t ist ical guesses a t  wh er e t he offender  is lia ble
to live, based on the sim ila r it y in  t r avel pa t t erns to a  known sample of ser ia l offenders for
the sa me type of cr ime.  The J tc rou t ine bu ilds on  the Rossm o (1993a; 1993b; 1995)
fra mework , bu t  ext en ds  it s m odelin g capabilit y.

1. A grid is over laid on t op of the st udy ar ea .  This grid can  be eith er  impor ted
or can  be gener a ted by Crim eS tat (see cha pter 2).  The grid represents t he
en t ire study a rea .  Un like Rossmo or  Canter  and Snook, ther e is n o opt imal
st udy ar ea .  The t echnique will model tha t  which  is defined.  Thu s, the user
has t o select  an  a rea  in telligen t ly.

2. The rout in e ca lcu la tes the dis t ance between  each  in ciden t  loca t ion
commit ted by a  ser ia l offender  (or  gr oup of offenders workin g t ogether ) and
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each  cell, defined by th e cen t roid of the cell.  Rossm o (1993a; 1995) used
indir ect  (Manha t tan) dist ances.  However , th is would be a ppropr ia te only
when a  city fa lls on  a  un iform grid.  The J tc rou t ine a llows  both  d irect  and
in dir ect  dis t ances.  In  most  cases, d ir ect  dis t ances would  be the most
appropr ia te choice a s a  police depar tmen t  would  norm ally locat e origin  and
dest ina t ion  loca t ions r a ther  than  pa r t icu lar  rou tes t ha t  a re taken  (see
below).

3. A d is t ance decay funct ion  is  applied  to each  gr id  cell-inciden t  pa ir  and sums
the va lues over  a ll inciden t s. Th e u ser  has a  choice wh et her  to model t he
t ravel dist ance by a m athemat ica l funct ion  or  an  empir ica lly-der ived
funct ion .

4. The r esu ltan t  of the dist ance decay function for  each gr id cell-inciden t  pa ir
a re summed over  a ll inciden ts t o produce a lik elihood (or  densit y) est imate
for  ea ch gr id cell.  

5. In  both  cases, t he progr am output s the two resu lt s: 1) the gr id  cell which  has
the pea k likelih ood est imate; and 2) th e likelih ood est imate for  ever y cell. 
The la t t er  ou tpu t  can  be saved  as a  S urfer® for Windows ‘dat ’, ArcView
S pat ial Analyst© ‘asc’, ASCII  ‘grd’, ArcView ® ‘.sh p’, MapIn fo® ‘.m if’ ,
Atlas*GIS ™ ‘.bn a’ file or  as a n  Ascii grid  ‘grd’ file wh ich can  be r ea d by many
GIS packa ges (e.g., AR C/ IN FO®, Vertical Mapper©). These files can  a lso be
rea d by oth er  GIS packa ges (e.g., Mapt itude).

F igure 10.1 shows t he logic of the r out ine a nd figure 10.2 shows t he J our ney t o
Crime (J tc) screen. There ar e two par ts t o th e rout ine.  First,  th ere is a calibrat ion m odel
wh ich is  used in  the em pir ically-der ived dis t ance function .  Second, t her e is  the J our ney t o
Cr ime (J tc) model it self in  which  the user  can  select  either  the a lready-ca libra ted  dis tance
fun ction  or t he m athem at ical function .  The em pir ically-der ived fun ction  is, by far , the
ea siest  to use and is , consequ en t ly, th e defau lt  choice in  Crim eS tat.  The discuss ion  of it  is
on  p. 35.  However , t he ma themat ica l funct ion  can  be used  if t here is  inadequa te dat a  t o
const ru ct a n empirical dista nce decay fun ction or if a pa rt icular  form  is desired.

D is ta n ce  Mo de lin g  Us in g  Ma th e m at ic al F u n ct io n s

We’ll s t a r t  by illus t ra t ing the use of the mathemat ica l funct ions  because th is  has
been the t r adit iona l way tha t  dist ance decay ha s been  exam ined.  The Crim eS tat J t c
rout ine a llows t he u ser  to define dist ance decay by a  mathem at ical function .  

P r ob ab ili ty  Di st an c e  Fu n c ti on s

The user  selects one of five probabilit y densit y d is t r ibu t ion s to defin e a  likelihood
tha t  the offender  has t r aveled a  par t icu la r  dis t ance to commit  a  cr im e.   The adva ntage of
having five fun ctions, a s opposed to on ly one, is t ha t  it  pr ovides m ore flexibility in
descr ibing t ravel beh avior .  The t ravel dis t ance dist r ibu t ion  followed  will vary by cr ime
type, t im e of day, method of 



Journey to Crime Interpolation Routine

Primary file:
Crime locations

Reference grid

Travel demand function

Figure 10.1:



Journey to Crime ScreenFigure 10.2:



10.21

opera t ion , and  numerous  other  va r iables .  The five funct ions  a llow an  approach  tha t  can
simulat e more accura tely t r avel beha vior  under  differen t  condit ions.  Ea ch  of these h as
parameter s tha t  can  be modified, a llowin g a  very la rge number  of possibilit ies for
descr ibin g t ravel behavior of a cr imina l.  

Figur e 10.3 illust ra tes th e five types.2  Defau lt  va lu es based on Ba lt im ore Cou nty
have been pr ovided for  each .  The user , however , can  change th ese a s n eeded.

Br iefly, th e five funct ions a re:

Li n ea r

The simplest  type of dist ance model is a linear  funct ion .  This m odel post u lat es t ha t
the likelihood of commit t in g a  cr im e a t  any par t icu la r  loca t ion  declines by a  constan t
amount  with  dist ance from the offender ’s h ome.  It is h ighest  near  the offender ’s h ome but
drops off by a  constan t  amount  for  each  un it  of dis t ance un t il it  fa lls to zero.  The form of
th e linear equat ion is:

f(d ij) = A +B*d ij (10.20)

where f(d i j)  is  the likelihood tha t  the offender  will com mit  a  cr im e a t  a  par t icu la r  loca t ion ,
i, defined h er e a s t he cen ter  of a  gr id cell, d i j is the dist ance between  the offender ’s
res idence and  loca t ion  i, A  is a  slope coefficien t  wh ich defines  the fall off in d ist ance, and B
is a  const an t .  It would be expected t ha t  the coefficient  B  would  have a  nega t ive sign  sin ce
the likelihood should  decline wit h  dis t ance.  The user  must  provide va lu es for  A  an d B . 
The defau lt  for  A is  1.9 and for  B is -0.06.  This  funct ion  assumes no bu ffer  zon e around the
offender ’s r esidence.  When  the fun ction rea ches  0 (th e X axis), th e r out ine au toma t ically
subst it u tes a  0 for  the funct ion .

Nega t i ve  Exponen t ia l

A sligh t ly more complex fun ction is t he nega t ive exponen t ia l.  In  th is t ype of model,
the likelih ood is  a lso h ighest  nea r  the offenders h ome and d rops off with  dis t ance. 
However, the decline is at a  const an t rate of decline, thus dr oppin g quickly nea r  the
offender ’s h ome unt il is a pp roaches  zer o likelihood.  The m athem at ical form of the n ega t ive
exponen t ia l is

       -B*d ij
f(d ij) = A*e (10.21)

where f(d ij) is t he likelihood t ha t  the offender  will commit  a  crim e a t  a  pa r t icula r  locat ion , i,
defined h er e a s t he cen ter  of a  gr id cell, d ij is  the dis t ance between  each  reference loca t ion
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and each cr ime loca t ion, e  is t he ba se of the na tura l logar ithm, A is t he coefficien t  and B is

an  exponen t  of e .  The user  input s valu es for  A  - the coefficient , an d B - the exponent .  The

defau lt for  A is 1.89 and for  B is -0.06.  This fun ct ion  is similar  to the Can ter  model
(equa t ion  10.19) except  tha t  the coefficien t  is calibra ted.  Also, like t he linea r  fun ction, it
a ssu mes n o buffer  zone around t he offender ’s r esiden ce.

N or m a l

A norma l d is t ribu t ion  a ssumes  the peak  likelihood  is  at  some op tima l d is t ance from
the offender ’s h ome bas e.  Thus, the funct ion  r ises t o tha t  dist ance and t hen  declines .  The
ra te of increase pr ior  to th e opt imal dis t ance an d t he r a te of decrease from tha t  dis t ance is
sym met r ical in  both  dir ections.  Th e m athem at ical form is:

(d ij - Mean D)
Zij     = ------------------- (10.22)

         Sd

          1         -0.5*Zij
2

f(d ij) =   A *  -------------------- *  e (10.23)
 Sd* SQRT(2B)

where f(d ij) is t he likelih ood t ha t  the offender  will commit  a  crim e a t  a  pa r t icula r  loca t ion, i
(defined her e a s t he cen ter  of a  gr id cell), d ij is  the dis t ance between  each  reference loca t ion
and each cr ime loca t ion, Mea nD is  the m ea n  dis t ance inpu t  by t he u ser , Sd  is  the s tanda rd

devia t ion of dist ances, e  is the bas e of the na tura l logar ith m, an d A is a coefficient .  The

user  inpu t s va lues  for  Mea nD, S d , an d A.  The defau lt va lues  a re 4.2 for  the mean  dist ance,
Mea nD, 4.6 for  the s t anda rd devia t ion, S d , a nd 29.5 for  the coefficien t , A.

By carefu lly scaling the pa rameters of the model, th e normal dist r ibut ion  can  be
ada pt ed t o a  dist ance decay funct ion  with  an  increa sing likelihood for  near  dist ances a nd a
decreasin g lik elihood for  fa r  dis t ances.  F or  exa mple, by ch oosin g a  st andard devia t ion
grea ter  than  the mean  (e.g., MeanD = 1,S d  = 2), t he dis t r ibu t ion  will be skewed to the left
because t he left  t a il of the normal dist r ibut ion  is not eva lua ted.  The fun ct ion  becomes
similar t o th e model postu lated by Bran tingham  an d Bran tingham  (1981) in t ha t it  is a
sin gle funct ion  which  descr ibes t r avel behavior .

L og n or m a l

The lognorm al funct ion  is similar  to the normal except  it is m ore skewed, eith er  to
the left  or  to the r igh t .  It h as t he poten t ial of sh owing a  very rapid increa se n ear  the
offender ’s h ome bas e with  a  more gra du a l decline from a  loca t ion  of pea k likelihood (see
Figure 10.3).  It is a lso similar  to the Bra n t ingham and Bran t ingham (1981) model.  The
ma th emat ical form  of th e fun ction is:

1            -[ ln (d 2
ij) - M e a n D  ]2 / 2 *s d

2

f(d ij) =   A  * ----------------------------- *  e  (10.24)
d 2

ij * S d* S Q R T (2B)
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where f(d ij) is t he likelihood t ha t  the offender  will commit  a  crim e a t  a  pa r t icula r  locat ion , i,
defined h er e a s t he cen ter  of a  gr id cell, d ij is  the dis t ance between  each  reference loca t ion
and each cr ime loca t ion, Mea nD is  the m ea n  dis t ance inpu t  by t he u ser , Sd  is  the s tanda rd

devia t ion of dist ances, e  is the bas e of the na tura l logar ith m, an d A is a coefficient .  The

user  inpu t s Mea nD, S d  , and A.  The defau lt values a re 4.2 for  the mea n  distance, Mean D,
4.6 for t he s t anda rd devia t ion, S d , a nd 8.6 for  the coefficien t , A. They were ca lcu la ted from
the Ba lt im ore Cou nty da ta  (see table 10.3).

Trunca ted  Nega t i ve  Exponen t ia l

The t runca ted nega t ive exponent ia l is a  join ed funct ion  made up of two dis t in ct
mathem at ical functions - the lin ea r  and t he n ega t ive exponent ia l.  For t he n ea r  dis t ance, a
posit ive linea r  fun ction is defined, s t a r t ing at  zero likelihood for  dis t ance 0 and in creasin g
to dp , a  locat ion  of peak likelihood.  Th er eu pon, the fun ction follows a  nega t ive exponen t ia l,
declin ing qu ickly wit h  dis t ance.  The two mathem at ical functions m aking up t h is splin e
funct ion  a re

Linear : f(d ij) = 0 + B*d ij = B*d ij for  d ij $ 0, d ij# dp (10.25)

Nega t ive      -C*d ij

Exponen t ia l: f(d ij) = A*e for  Xi > dp (10.26)

where d ij is  the dis t ance from the home base, B is  the slope of the linear  funct ion  and for
the negat ive exponent ial funct ion  A is a coefficient  and C is an  exponent .  Since the
nega t ive exponent ia l only s t a r t s a t  a  pa r t icula r  dis t ance, dp , A, is a ssu med t o be th e
intercept if the Y-axis wer e t r ansposed t o tha t  dist ance.  Similar ly, th e slope of the linear
funct ion  is  es t imated  from the peak  dis tance, dp , by a  peak likelihood function. The defau lt
va lues  a re 0.4 for  the pea k dis t ance, dp , 13.8 for  the peak likelihood, a nd -0.2 for  the
exponent , C. Again , th ese wer e ca lcu lat ed with  Balt imore Coun ty dat a  (see t able 10.3)

This funct ion  is the closest  appr oximat ion  to the Rossm o model (equa t ions 10.13
and 10.16).  H owever , it  differ s in  severa l m athemat ica l proper t ies.  F ir st , t he ‘near  home
ba se’ fun ction  is lin ea r  (equa t ion 10.25), ra ther  than  a  non-linea r  fun ction  (equa t ion 10.13). 
It  assumes a  sim ple increase  in  t r avel likelih oods  by dist ance from t he h ome ba se, up t o
the edge of the sa fety zone.3  Second, t he dis t ance decay par t  of the funct ion  (equa t ion
10.26) is  a  nega t ive exponent ia l, ra ther  than  an  in verse dis t ance fu nct ion  (equa t ion  10.13);
consequ ent ly, it  is more st able when  dist ances a re very close t o zero (e.g., for  a  cr ime wh ere
ther e is  no ‘nea r  home ba se’ offset ).  

Calibrat ing  an  Appropr iate  Probabil ity  Distance  Funct ion

The mathemat ics  a re rela t ively st ra igh t forward.  H owever , h ow does one know
wh ich dist ance function to use?  The answer  is t o get  some da ta  and calibra te it .  It  is
impor tan t  to obta in  da ta  from a  sample of known offenders  where both  their  r es idence a t
the t ime t hey committ ed crimes a s well as  the cr ime loca t ions a re kn own.  This is ca lled
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the calibration  data set .  Each  of t he models  ar e then  t es t ed  aga inst  t he ca libra t ion  da t a
set  using an  appr oach  similar  to tha t  explained below.  An er ror  ana lysis is condu cted t o
det ermine wh ich of the models best  fits  the da ta . Fina lly, th e ‘best  fit’ model is used t o
est imate t he likelih ood t ha t  a  pa r t icula r  ser ia l offender  lives a t  any one loca t ion.  Th ough
the process is  t ediou s, on ce the parameter s a re ca lcu la ted they ca n  be used repea tedly for
predictions.

Because every ju r isdict ion  is  un ique in  t erms of t r avel pat t erns, it  is  impor t an t  t o
ca libra t e t he parameter s  for  t he par t icu la r  ju r isdict ion .  While t here may be some
sim ila r it ies between  cit ies (e.g., E astern  “cen t ra lized” cit ies v. Western  “au tomobile” cit ies),
there a re a lways  un ique t ravel pa t t erns defin ed by t he popula t ion  size, h is tor ica l r oad
pa t t ern , an d ph ysica l geogra ph y.  Consequ ent ly, it  is necessa ry to ca libra te the pa rameters
anew for  each n ew city.  Idea lly, th e sample sh ould be a  large en ough  so tha t  a  reliable
est im ate of the parameter s can  be obt a in ed.  F ur ther , t he ana lyst  should  check the er rors
in  each  of t he models  to ensu re tha t  t he bes t  choice is  used  for  t he J t c rou t ine.  However ,
once it  has been  completed, the paramet er s can  be r e-us ed for  many years a nd only
periodically re-checked.

Data S et  from Ba lt imore Cou nty

I’ll illust ra te with  da ta  from Balt imore Coun ty.  The s t eps in  ca libra t ing the J tc
par am eters were as follows:

1. 49,083 ma tched a r rest  and incident  records from 1992 t h rough 1997 wer e
obta in ed in  order  to provide da ta  on where the offender  lived in  rela t ion  to
th e crime locat ion for which t hey were ar rested.4 

2. The da ta  set  was checked to ensure tha t  there were X and Y coordin a tes for
both  the ar rest ed ind ividua l’s r esiden ce loca t ion  and t he cr ime incident
loca t ion  for  which  the individua l was  being charged.  The da ta  were clean ed
to elimina te du plica te records or en t r ies for  which  eith er  the offender ’s
residen ce or  the inciden t  loca t ion  were missing.  The fina l da ta  set  had
41,424 records.  There were many mu ltiple r ecords for  the sa me offender
sin ce an  individua l can  commit  more t han  one cr ime.  In  fact , more t han  ha lf
the records in volved ind ividua ls who were list ed two or  more t imes .   The
dist r ibut ion  of offender s by th e number  of offenses for  which  they were
charged is  seen  in  Table 10.1.  As would  be expected, a  small propor t ion  of
in dividua ls  account  for  a  sizeable propor t ion  of cr im es; approximately 30% of
the offender s in  the da tabase a ccounted for  56% of the inciden t s.

3. The da ta  wer e impor ted in to a spr ea dsheet , bu t  a  da taba se pr ogram could
equa lly have been u sed.  For  each  record, th e direct  dist ance between  the
ar rest ed individu a l’s r esidence and t he cr ime inciden t  loca t ion  was
ca lcu la ted.   Chapter  2 presen ted the formula s for  ca lcu la t in g dir ect
dist ances bet ween  two loca t ions a nd a re repea ted in en dn ote 5.5
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Ta ble  10 .1

Nu m be r o f Offen de rs  an d Offe n se s i n  Bal tim ore  Cou n ty : 1993-1997
Jou rney  to  Cr ime D atabase

Num ber  of      Number  of Pe rcent  o f Num ber  of Pe rcent  o f
Offense s      Ind iv id u als Offe n de rs Incide nts Incide nts

1 18,174    70.0%     18,174      43.9%
2   4,443    17.1%       8,886      21.5%
3   1,651      6.4%       4,953      12.0%
4      764      2.9%       3,056        7.4%
5      388      1.5%       1,940        4.7%
6-10      482      1.9%       3,383        8.2%
11-15        61      0.2%          757               1.8%
16-20        10    <0.0%          175        0.4%
21-25          3    <0.0%            67        0.2%
26-30          0    <0.0%              0        0.0%
30+          1    <0.0%            33      <0.0%

__________________________________________________________________
25,977      41,424

4. Th e r ecords  wer e sort ed in to sub-groups based on  differen t  types of cr imes. 
For  the Balt imore Coun ty example, eleven cat egor ies of cr ime incident  were
used.  Table 10.2 presen t s t he categories  wit h  their  respective sa mple sizes. 
Of course, ot her  sub-gr oups could  have been  iden t ified.  E ach  sub-gr oup was
sa ved as a  sepa ra te file.  The same r ecords  can  be par t  of mult iple  files (e.g.,
a  record could be included in  the ‘a ll robber ies’ file a s well a s in  the
‘commercial robber ies’ file).  All r ecords wer e included in  the ‘a ll cr imes ’ file.

5. For  each  type of cr ime, t he file was grouped in to dist ance int ervals of 0.25
miles each.  This involved t wo st eps.  F irs t , th e dist ance between  the
offender ’s r es idence and t he cr ime loca t ion was sort ed in  ascen din g order . 
Second, a frequ ency distr ibut ion  was condu cted on the dist ances a nd grouped
int o 0.25 mile in tervals (oft en  ca lled bins).  The degree of pr ecision in
dis tance would  depend on the size of the da ta  set .  F or  41,426 records,
quar ter  mile bins  were appr opr iat e.

6. For each t ype of crim e, a  new file was crea ted wh ich in cluded only t he
fr equency d is t ribu t ion  of t he d is t ances  broken  down  in to qua r t er  mile
dis tance inter va ls, d i.

7. In  order  to compa re differen t  types of cr imes , which  will have differen t
frequ en cy dist r ibu t ions , two new var iables  wer e crea ted.  Fir st , the
frequ en cy in  the in ter val wa s conver ted in to th e per cent age of a ll cr imes of in
ea ch in ter va l by dividin g the frequ en cy by the t ota l number  of inciden t s, N ,
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and mult ip lyin g by 100.  Second, t he dis t ance in terva l was adju sted.  Sin ce
the in ter val is a  range wit h  a  st a r t ing dis t ance an d a n  endin g

Ta ble  10 .2

Baltimore  Coun ty  Fi les  Used for Cal ibrat ion

Crime Type Sam ple S ize
All crimes 41,426
Homicide      137
Rape      444
Assau lt    8,045
Robbery (a ll)   3,787
Commer cial r obber y   1,193
Ba nk robber y      176
Burgla ry   4,694
Motor  veh icle t heft    2,548
La rceny 19,806
Arson       338

dis tance but  has been  iden t ified by sprea dsheet  pr ogram as t he begin n ing
dis tance on ly, a small fr action, represen t ing the m idpoin t  of the in ter val, is
added  to the dist ance int erval.  In our  case, since each in terval is 0.25 miles
wide, t he adju stment  is  ha lf of t h is , 0.125.  E ach  new file, t herefore, h ad four
va r ia bles: the in terva l d is t ance, t he adju sted in terva l d is t ance, t he frequency
of in ciden t s wit h in  the in terva l (t he number  of cases fa llin g in to the
in ter val), and t he per cent age of a ll cr imes of tha t  type with in  the in ter val.

8. Us ing the regression  pr ogra m in t he cr ime t ravel dem and m odel (see chapt er
12), a  ser ies of regr ession  equa t ion s was set  up to model t he frequency (or
th e percent age) as a  fun ction of dista nce.  In th is case, I used our  rout ines,
but other st at istical packa ges could equa lly ha ve been u sed.  Again, becau se
compa r isons bet ween  differen t  types of cr imes wer e of in ter es t , the
per centage of cr imes  (by type) with in a n  int erval was u sed a s t he depen den t
var iable (and wa s defined a s a  per centage, i.e., 11.51% was r ecorded a s
11.51).  Five equa t ions t est ing each  of the five models wer e set  up.

Li n ea r

For  the linear  funct ion , the t es t  was

Pct i = A + Bd i (10.27)
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where Pct i is t he per centage of a ll crim es of tha t  type fallin g in to int er va l i, d i

is  the dis t ance for  in terva l i, A is the in tercept , a nd B is  the slope.  A a nd B
are es t imated dir ect ly from the r egr ession  equ a t ion.  

Nega t i ve  Exponen t ia l

For  the negat ive exponent ial funct ion , th e var iables h ave to be tr ansformed
to est imate t he paramet er s.   Th e fun ction is

         -B*d i

Pct i = A * e (10.28)

A new va r ia ble is  defin ed which  is  the na tura l loga r it hm of the percen tage of
a ll crim es of tha t  type fallin g in to th e in ter va l, ln (Pct i).  This t erm was t hen
regr essed a ga inst  the dist ance inter va l, d i.

ln (Pct i) = K - B*d i (10.29)

However , s in ce the or igin a l equa t ion  has been  t ransformed in to a  log
funct ion , B is  the coefficien t  and A can  be ca lcu la ted dir ect ly from

ln (Pct i) = ln (A) - B*d i (10.30)

A = eK
 (10.31)

If the percen tage in  any bin  was 0 (i.e., Pct i = 0), th en a  value of -16 was
taken  since the na tura l logar ith m of 0 cannot  be solved (it  appr oximates -16
as the percen tage approaches 0.0000001).

N or m a l

For  the normal funct ion , a m ore complex tr ansformat ion  must  be used.  The
norm al function in  the m odel is

1          -0.5*Zij
2

Pct i  =    A *  ----------------------- *  e (10.32)
 Sd* SQRT(2B)

First , a st an dar dized Z  var iable for t he dist ance, d i, is crea ted

(d i - Mean D)
Zi  = ------------------- (10.33)

         Sd

where Mean D is th e mean  dista nce and S d  is  the st andard devia t ion  of
dist ance.  These a re ca lcu lat ed from t he or igina l da ta  file (before crea t ing the
file of frequen cy dis t r ibu t ions).  Second, a  norm al t r ansform at ion  of Z is
const ruct ed  with
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1         -0.5*Zij
2

Normal(Zi) =   -------------------- *  e (10.34)
  Sd* SQRT(2B)

F ina lly, th e norm alized va r iable is  regressed a gainst  the per cent age of a ll
crim es of tha t  type fallin g in to th e in ter va l, Pct i wit h  no cons tan t

Pct i = A* Normal(Zi) (10.35)

A is est ima ted by th e regression  coefficient .

L og n or m a l

For t he lognorm al fun ction , anoth er  complex t ransformat ion m ust  be done. 
The lognormal fu nct ion  for  the percen tage of a ll cr im es of a  type for  a
pa r t icula r  dis t ance int er val is

1            -[ln (d2
i) - MeanD ]2 / 2 *Sd

2

P ct i =         A * -------------------------- * e (10.36)
  d2

ij * Sd* SQRT(2B)

The t ransformat ion  can  be crea ted in s t eps.  F irs t , crea te L

L   =    ln (d i
2) (10.37)

Second, crea te M

M  = (l - Mean D)2 (10.38)

Third , crea te O

m
O =   --------- (10.39)
        (2*S d

2)

Four th , crea te P  by r a isin g e  to the O t h  power .

P  = eO
(10.40)

Fift h , cr ea te the lognormal con version , Lnormal

1       
Lnormal(d i) =  A  * -----------------------------  * P (10.41)

  d2
ij * Sd* SQRT(2B)

F ina lly, th e lognormal var iable is  regressed a gainst  the per cent age of a ll
cr im es of tha t  type fa llin g in to the in terva l, Pct i wit h  no cons tan t
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Pct i = A* Lnormal(d i) (10.42)

A is est ima ted with  the regression  coefficient .

Trunca ted  Nega t i ve  Exponen t ia l

For t he t runcat ed nega t ive exponent ia l fun ction , two models  wer e set  up. 
The fir st  applied to the dis t ance range from 0 to the dis t ance a t  which  the
percentage (or  frequ en cy) is h ighest , Ma xd i.  The second a pp lied t o all
dis t ances gr ea ter  than  th is  dis t ance

Linear : Pct i = A + Bd i for  d ij $ 0, d ij# Ma xd ij (10.43)

Nega t ive -C*di

Exponen t ia l:  Pct i = A*e for  d ij> Maxd ij (10.44)

To use t h is funct ion , th e user  specifies the dist ance a t  which  the pea k
likelih ood occurs, d p  (the peak  d istance) and  the va lue for  tha t  peak
likelihood, P (th e peak  likelihood ).  For  the n ega t ive exponent ia l fun ction , the
user  specifies t he exponent , C.  

In  order  to splice the two equa t ions t ogeth er  (the spline), th e Crim eS tat
t runca ted nega t ive exponent ia l r out in e st a r t s the linear  equa t ion  a t  the
origin and ends it  a t t he highest value.  Thus,

A = 0 (10.45)

B = P/dp (10.46)

where P is the peak likelihood an d dp  is the pea k d istance.

The exponent , C, can  be est ima ted by tr ansforming the depen den t  var iable,
Pct i, as in  the n ega t ive exponent ia l above (equa t ion 10.28) an d r egr essin g the
na tura l log of the percen tage (ln (Pct i) aga inst  the dist ance inter va l, d i, only
for  those in terva ls  tha t  are grea ter  than  the peak  dis tance.  I have found  tha t
est imat ing the t r ansform ed equ a t ion  wit h  a  coefficien t , A in

           -C*d i

Pct i = A  *  e (10.47)

ln (Pct i) = Ln(A) - C*d i (10.48)

gives a  bet t er  fit  to th e equ a t ion .  However , the u ser  need  only inpu t  the
exponent , C, in  the J t c rou t ine a s t he coefficien t , A, of the n ega t ive
exponent ia l is ca lcu la ted in terna lly t o produce a  dis t ance va lu e a t  which  the
peak likelihood occur s.  Th e formula  is:
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         ln(P) + C*(dp  - d i)

A = e (10.49)

wh er e P  is t he pea k likelih ood, d p  is t he dist ance for t he pea k likelihood, C is
an  exponent  (assu med to be positive) an d d i is  the dis t ance in terva l for  the
h is togram.

9. Once the pa rameters for  the five models h ave been est ima ted, th ey can  be
compared to see which  one is  best  a t  predict in g t he t r avel behavior  for  a
pa r t icu lar  type of cr ime.  It  is to be expected t ha t  differen t  types of cr imes
will have d ifferen t  op tima l models  and tha t  t he parameter s  will a lso va ry.

Exam ples from B alt imore  County

Let ’s illu st ra te wit h  the Ba lt im ore Cou nty da ta .  F igure 10.4 shows the frequency
dist r ibut ion  for  a ll types of cr ime in  Balt imore Coun ty.  As can  be seen , at  the nearest
dis t ance in terva l (0 to 0.25 miles wit h  an  assigned ‘adjusted’ midpoin t  of 0.125 miles),
about  6.9% of a ll cr imes  occur  with in a  qua r ter  mile of the offender ’s r esiden ce (it can  be
seen  on  the Y-axis).  However, for  the next in terval (0.25 to 0.50 miles with  an  assigned
midpoint  of 0.375 m iles), alm ost  10% of a ll crim es occur  a t  tha t  dis t ance (9.8%). In
su bsequ ent  int ervals, however, t he per centage decreases, a  lit t le less t han  6% for  0.50 to
0.75 m iles (wit h  the m idpoin t  bein g 0.625 m iles), a  lit t le more t han  4% for 0.75 to 1 mile
(th e m idpoint  is 0.875 miles), an d so fort h .  

The bes t  fit t ing st a t ist ical function wa s t he nega t ive exponen t ia l.  The par t icula r
equ a t ion  is

  -0.229*d i
Pct i = 5.575 *e (10.50)

This is shown with  the solid line.  As can  be seen , th e fit is good for  most  of the dist ances,
though  it  underest imates a t  close t o zer o dist ance an d overest imates from about  a  ha lf mile
to about  four  miles.  There is  only sligh t  evidence of decreased act ivit y n ear  to the loca t ion
of the offender . 

However , the dist r ibu t ion va r ies  by t ype of crim e.  Wit h  the Ba lt imore County da ta ,
pr oper ty cr imes , in  gener a l, occur  fa r ther  away th an  per sona l cr imes .  The t runca ted
nega t ive exponent ia l genera lly fit  proper ty cr im es bet t er , lendin g suppor t  for  the
Bran t ingham and  Bran t ingham (1981) framework  for  these types .  For  example, la rceny
offender s h ave a definite sa fety zone around t heir r esidence (figure 10.5).  Fewer  than  2%
of la rceny thefts occur  wit h in  a  qu ar ter  mile of the offender ’s r es idence.  However , the
percentage jumps  to about  4.5% from a  qu ar ter  mile t o a h a lf.  The t runcat ed nega t ive
exponen t ia l funct ion  fit s  t he dat a  r easonably well t hough  it  overes t ima tes  from abou t  1 to
3 miles and u nderest imat es from a bout  4 to12 miles.



Journey to Crime Distances: All Crimes
Negative Exponential Distribution
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Journey to Crime Distances: Larceny
Truncated Negative Exponential Function

Figure 10.5:
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Similar ly, motor vehicle theft s sh ow decrea sed a ct ivity near  the offender ’s r esiden t ,
though  it  is  less pronounced than  la rceny t heft .  F igure 10.6 shows the dis t r ibu t ion  of
motor  veh icle theft s and the t runca ted nega t ive exponent ia l fu nct ion  which  was fit  to the
da ta .  As can  be seen , the fit is  rea sonably good though  it  t en ds  to un derest imate m iddle
range dis t ances  (approxim ately 3-12 miles).

Some types of cr im e, on  the other  hand, a re very d ifficu lt  to fit .  F igure 10.7 shows
the dist r ibut ion  of bank r obber ies.  Pa r t ly because t here were a  limited  number  of cases
(N=176) and par t ly because it ’s a  complex pa t t er n , the t runcat ed nega t ive exponent ia l gave
the best  fit, bu t  not  a  pa r t icu lar ly good one.  As can  be seen , th e linear  (‘near  home’)
funct ion  underes t ima tes  some of t he nea r  dis t ance likelihoods wh ile t he nega t ive
exponent ia l dr ops off too quickly; in  fact , to ma ke t h is function  even  pla usible, t he
regr ession  wa s r un  only u p t o 21 miles  (other wise, it  underest imated even  more). 

For  some cr im es, it  was very d ifficu lt  to fit  any s in gle funct ion .  F igure 10.8 shows
the frequency distr ibut ion  of 137 homicides wit h  th ree funct ions being fit t ed t o the da ta  -
the t runca ted nega t ive exponent ia l, the lognormal, and the normal.  As can  be seen  each
fun ction fit s only some of the da ta , bu t  not a ll of it .

Test ing  for  Res idual  Errors  in  the  Model

In  shor t , t he five mathemat ica l fu nct ion s a llow a  user  to fit  a  va r iety of dis t ance
decay dist r ibut ions. Ea ch  of the models will pr edict  some pa r t s of the dist r ibut ion  bet t er
than  others.  Consequent ly, it  is  im por tan t  to conduct  an  er ror  ana lysis  to determin e which
model is ‘best’.  In an  error an alysis, th e residua l error is defined as 

Residu a l er ror  =   Yi - E(Yi) (10.51)

where Yi is  the observed (actua l) lik elihood for  dis t ance i and E(Yi) is  the likelihood
pr edicted by th e model.  If raw numbers of inciden t s a re used, t hen  the likelihoods a re the
number  of inciden t s for  a  pa r t icula r  dis t ance.  If the number  of inciden t s a re conver ted in to
propor t ion s (i.e., probabilit ies), t hen  the likelihoods a re the propor t ion s of in ciden t s for  a
pa r t icula r  dis t ance. 

The choice of ‘best  model’ will depen d on what  pa r t  of the dist r ibut ion  is consider ed
most  im por tan t .  F igure 10.9, for  exa mple, shows the residua l er rors on veh icle theft  for
the five fit t ed models.  Th a t  is, ea ch of the five models was fit  to th e propor t ion  of veh icle
theft s by dis t ance in terva ls  (as expla in ed above).  F or  each  dis t ance, t he discrepancy
between  the actua l percentage of vehicle th eft s in  tha t  int erval and t he pr edicted
percen tage was calcu la ted. If there was a  per fect  fit , t hen  the discrepancy (or  residua l) was
0%.  If the actua l percentage was  grea ter  than  the pr edicted (i.e., th e model
under est ima ted), then  the residu a l was  positive; if the actua l was  sm aller t han  the
pr edicted (i.e., t he m odel overest imated), th en  the r es idu a l wa s n ega t ive.  



Journey to Crime Distances: Vehicle Theft
Truncated Negative Exponential Function
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Journey to Crime Distances: Bank Robbery
Truncated Negative Exponential Function
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Journey to Crime Distances: Homicide
Normal, Lognormal, and Truncated Negative Exponential Functions
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Vehicle Theft
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Using CrimeStat for Geographic Profiling 
 

Brent Snook, Memorial University of Newfoundland,  
Paul J. Taylor, University of Liverpool, Liverpool 

Craig Bennell, Carleton University, Ottawa 
 

 A challenge for researchers providing investigative support is to use 
information about crime locations to prioritize geographic areas according to how 
likely they are to contain the offender’s residence. One prescient solution to this 
problem uses probability distance functions to assign a likelihood value to the 
activity space around each crime location. A research goal is to identify the function 
that assigns the highest likelihood to the offender’s actual residence, since this 
should prove more efficient in future investigations.  
 
 CrimeStat was used to test of the effectiveness of two functions for a sample 
of 68 German serial murder cases, using a measure known as error distance. The top 
figures below illustrate the two functions used and the bottom figures portray the 
corresponding effectiveness of the functions by plotting the percentage of the sample 
‘located’ by error distance. A steeper effectiveness curve indicates that home 
locations were closer to the point of highest probability and that, consequently, the 
probability distance function was more efficient. In this particular test, no difference 
was found between the two functions in their ability to classify geographic areas.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Original Article: Taylor, P.J., Bennell, C., & Snook B. (2002) Problems of Classification in Investigative Psychology. Proceedings of 
the 8th Conference of the International Federation of Classification Societies, Krakow, Poland 
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As  can  be seen  in  figure 10.9, the t runca ted  nega t ive exponen t ia l fit  the da ta  well
from 0 to about  5 miles, but t hen becam e poorer t ha n oth er models for longer dista nces. 
The nega t ive exponent ia l m odel was not  as good as the t runca ted for  dis t ances up to about
5 miles, bu t  was bet t er  for  dis t ances beyon d tha t  poin t .  The normal d is t r ibu t ion  was good
for dista nces from a bout  10 miles and far th er.  The lognorm al was not pa rt icular ly good for
any dista nces oth er  than  a t  0 miles, nor  was t he linear .

The degree of pr edicta bility var ied by type of cr ime.  For some types , pa r t icula r ly
pr oper ty cr imes , th e fit wa s r easona bly good.  I obta ined  R2 in  the order  of 0.86 to 0.96 for
bu rglary, robbery, assau lt , larceny, a nd a u to th eft .  For other  types  of crim e, pa r t icula r ly
violen t  crim es, the fit was n ot ver y good with  R2 values in  the order  of 0.53 (rape), 0.41
(a r son) and 0.30 (homicide).  These  R2 va lu es were for  the en t ir e dis t ance range; for  any
pa r t icula r  dis t ance, however , the predicta bilit y var ied from ver y high  to very low.  

In  modeling dis t ance decay with  a  mathem at ical function, a  user  has t o decide
which  par t  of the dis t r ibu t ion  is  the most  im por tan t  as no sim ple mathemat ica l fu nct ion
will normally fit  a ll the da ta  (even  approximately).  In  these cases , I a s sumed  tha t  the near
dist ances wer e more impor tan t  (up t o, say, 5 miles) and, th erefore, selected t he model
which  ‘best ’ fit  those dis t ances (see table 10.2).  H owever , it  was not  a lways  clea r  which
model was best , even  wit h  tha t  limited crit er ia .  

P r ob le m s  w i th  Ma th e m a ti ca l D is ta n ce  D e ca y F u n ct io n s

There a re severa l r easons tha t  mathemat ica l m odels  of dis t ance decay dis t r ibu t ion s,
su ch  as illust ra ted in t he J t c rou t ine, do not  fit da ta  very well.  Fir st , as m ent ioned ea r lier,
few cit ies have a  completely sym met r ical gr id s t ructu re or even  one t ha t  is a pproximately
gr id-like (th er e a re except ions, of course).  Limita t ions of ph ysical topograph y (moun ta ins,
oceans, r ivers, lakes) as well as  differen t  h istor ica l developm ent  pa t t erns m akes  t r avel
asym met r ical a roun d m ost  loca t ions .  

Second, t here is  popula t ion  densit y.  Sin ce most  met ropolit an  a reas have much
higher  int ensity of lan d u se in  the cen ter  (i.e., more act ivities a nd facilities), t r avel t ends t o
be dir ected towards h igher  la nd use in tensit y t han  away fr om them.   F or  or igin  loca t ion s
tha t  ar e not dir ect ly in t he cent er, t r avel is more likely to go towards t he cent er t han  awa y
from  it .  

This would be tr ue of an  offender  as well.  If the per son wer e lookin g for  eith er
per sons or  proper ty as ‘t a rgets’, th en t he offender would be more likely to t r avel towards
the met ropolita n  cen ter  than  away from it.  Since most  met ropolita n  cen ters h ave st reet
net works t ha t  wer e la id ou t  much ear lier , the s t reet  net work ten ds  to be ir regu la r . 
Consequent ly, t r ips will va ry by loca t ion  wit h in  a  met ropolit an  a rea .  One would  expect
sh or ter  t r ips by an  offender  living close t o the met ropolita n  cen ter  than  one living fa r ther
away; sh or ter  t r ips for  offender s living in m ore built -up a reas t han  in lower  den sity ar eas;
sh ort er  t r ips  for  offender s in  mixed u se neighborh oods  than in  st r ictly r esiden t ia l
neighborh oods ; an d so fort h .  Thus, t he dist r ibu t ion  of t r ips  of any sort  (in  our  case, crim e
t r ips  from a  residen t ia l locat ion  to a cr ime loca t ion), will t en d t o follow a n  ir regu lar ,
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dist ance decay type of dist r ibut ion .  Simple m athemat ica l models will not fit  the da ta  very
well an d will ma ke ma ny errors.

Thir d, t he select ion  of a  best  mathemat ica l fu nct ion  is  pa r t ly dependent  on the
int erva l size used for  the bins.  In t he above examples, an  int erva l size of 0.25 miles was
used to calcu la te the frequency dis t r ibu t ion .  With  a  differen t  in terva l s ize (e.g., 0.5 miles),
however , a  sligh t ly differen t  dis t r ibu t ion  is  obt a in ed.  This  effect s the mathemat ica l
funct ion  tha t  is  selected  as well a s  the pa rameters  tha t  are es t imated .   For  example, the
issue of whet her  ther e is a  sa fety zone nea r  the offender ’s r esidence from which t her e is
decreased a ctivit y or  not is  pa r t ly depen dent  on t he in ter val size.  With  a  sm all inter val,
the zone may be det ected wh er ea s with  a  sligh t ly larger  in ter val the subt le dis t inction in
measu red distan ces may be lost.   On th e oth er ha nd, having a sma ller interval may lead to
unreliable est ima tes sin ce there may be few cases in  the int erval.  Ha ving a t echnique
depend on the in terva l s ize makes it  vu ln erable to mis -specifica t ion .

U s e s o f Ma th e m a ti ca l D is ta n ce  D e ca y F u n ct io n s

Does t h is m ea n  tha t  one should not u se mathem at ical dist ance functions?  I would
argu e tha t  under  most  cir cumstances, a  mathemat ica l fu nct ion  will give less precis ion  than
an  empir ica lly-der ived one (see below).  However , th ere are two cases wh en a
mathemat ica l model would be appr opr iat e.  First , if there is eith er  no da ta  or  insufficient
da ta  to model t he em pir ical t r avel dist r ibu t ion, t he u se  of a  mathem at ical m odel can  serve
as a n  appr oximat ion .  If the user  has a  good sen se of wha t  the dist r ibut ion  looks  like, t hen
a  mathem at ical m odel may be u sed t o appr oximate t he dist r ibu t ion .  However , if a  poor ly
defin ed funct ion  is  selected, t hen  the selected funct ion  may produce many er rors.

A second  case when  mathemat ica l models  of d is tance decay would  be appropr ia te is
in t heory developm ent  or  applica t ion .  Man y models of t r avel beha vior , for  exam ple,
assume a  sim ple dis t ance decay type of function in  order  sim plify the a llocat ion  of t r ips
over  a  region .  This  is  a  common procedure in  t r avel demand modeling where t r ips from
each  of many zones a re assigned to every ot her  zon e usin g a  gr avity t ype of funct ion
(St oph er  and Meybur g, 1975; Field an d Ma cGregor , 1987).  Even t hough t he model
produces er rors because it  assumes un ifor m t ravel behavior  in  a ll dir ect ion s, t he er rors a re
cor rected la ter  in  the m odeling pr ocess by adjust ing the coefficien t s for  a llocat ing t r ips  to
par t icu la r  roads (t r a ffic a ssignment ).  The model provides a  sim ple device and the er rors
a re corrected down the line.  St ill, I would  argu e tha t  an  empir ica lly-der ived dis t r ibu t ion
will p roduce fewer  er ror s  in  a lloca t ion  and, t hus, r equ ir e les s adjustmen t  la t er  on .  E r ror s
can  never  help a  model and it s bet t er  to get  it  more corr ect  in it ia lly to ha ve to adjus t  it
la t er  on; the adjust men t  may be inadequ a te.  Never theless, t h is is  common practice in
t ransport a t ion p lanning.

The  J ou rn e y t o Crim e  Ro u tin e  Us in g a  Math e m at ic al F orm u la

The J tc rou t ine wh ich  a llows m athemat ica l modeling is sim ple to use.  Figur e 10.10
illu st ra tes how the user  specifies a  mathemat ica l fu nct ion .  The rout in e requir es the use of
a  gr id which is  defined on  the r efer en ce file t ab of the progra m (see cha pt er  3).  Then , the



Jtc Mathematical Distance Decay FunctionFigure 10.10:
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user  must  specify the m athem at ical function  and t he paramet er s.  In  the figure, t he
t runca ted n egat ive exponent ial is being defined.  The u ser  must  input  values for  the pea k
likelih ood, t he pea k dis t ance, and t he exponent  (see equ a t ions  10.43 a nd 10.44 above).  In
the figure, s in ce the ser ia l offenses were a  ser ies of 18 robber ies, t he parameter s for
robbery ha ve been en tered int o the pr ogra m screen .  The pea k likelihood wa s 9.96%
(entered a s a  whole nu mber  - i.e., 9.96); the dist ance a t  which  th is pea k likelihood occur red
was the second dis t ance in terva l 0.25-0.50 miles (with  a  mid-poin t  of 0.38 miles); and the
est imated exponent  wa s 0.177651.  As m en t ioned a bove, the coefficien t  for  the n ega t ive
exponent ia l pa r t  of the equa t ion is  est imated in ter na lly.

Table 10.3 gives the pa rameters for  the ‘best ’ models wh ich  fit t he da ta  for  the 11
types of cr im e in  Ba lt im ore Cou nty. For  severa l of t hese (e.g., bank robber ies), t wo or  more
funct ions gave approxima tely equa lly good  fit s .  Note tha t  t hese parameter s  were
est im ated wit h  the Ba lt im ore Cou nty da ta .  They will n ot  fit  any ot her  ju r isdict ion .  If a
user  wishes to apply th is  logic, then  the parameter s should  be est im ated anew from
exist in g da ta . Never theless, on ce they h ave been  ca libra ted,  t hey ca n  be used for
predictions.

The rou t ine can  be ou tpu t  t o ArcView , MapIn fo, Atlas*GIS , S urfer for Windows,
S pat ial Analyst , and a s a n  Ascii grid  file wh ich can  be r ea d by many oth er  GIS packa ges. 
All bu t  S urfer for Windows r equ ire t ha t  the r efer en ce grid be crea ted by Crim eS tat. 

Distance  Model ing  Using  an Empir ica l ly  Determined Fu nct ion

An a lter na t ive to mathemat ica l modeling of dist ance decay is to empirically describe
the journey to cr ime d ist r ibut ion  and t hen  use t h is empir ica l funct ion  to est ima te the
residence locat ion.  Crim eS tat has a  two-dim ension a l k ernel densit y r out in e tha t  can
ca libra te the d is tance funct ion  if p rovided  da ta  on  t r ip  or igins  and des t ina t ions .  The logic
of ker nel dens ity est ima t ion  was descr ibed in cha pt er  8, an d won’t  be repea ted h ere.
Essen t ia lly, a  sym met r ical function  (th e ‘ker nel’) is pla ced over  ea ch point  in  a  dis t r ibu t ion. 
The dis t r ibu t ion  is  then  referenced rela t ive to a  sca le (an  equa lly-spaced line for  two-
dim ension a l k ernels  and a  gr id  for  th ree-dim ension a l k ernels ) and the va lu es for  each
ker nel a re summed a t  each r eferen ce locat ion .  See cha pt er  8 for  deta ils.

Calibrate  Kerne l  Dens i ty  Funct ion

The Crim eS tat ca libra t ion  rou t ine a llows  a user  t o descr ibe the d is t ance d is t ribu t ion
for  a  sample of jou rney to cr ime t r ip s.  The r equ ir emen t s a re tha t :

1. Th e da ta  set  must  have the coordin a tes of both  an  origin locat ion a nd a
des t ina t ion  loca t ion ; and

2. The r ecords  of a ll or igin and dest ina t ion  locat ions h ave been  popu la ted wit h
legit im ate coordin a te va lu es (i.e ., no unmatched records a re a llowed).
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Ta ble  10 .3

J ou rney  to Crime  Mathe matic al  Mode ls  for Balt imore Coun ty
Parameter  Est imates  for  Percentage  Dis tr ibut ion

(Sam ple Sizes in P ar enth eses)

ALL CRIMES

Nega t ive Exponen t ia l: Coefficien t : 5.575107
Exponen t :  0.229466

HOMICID E

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 14.02%

Peak  dis tance 0.38 miles
Exponen t  0.064481

RAP E

Lognormal: Mean 3.144959
St anda rd Devia t ion 4.546872
Coefficient  0.062791

ASSAULT

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 27.40%

Peak  dis tance 0.38 miles
Exponen t 0.181738

ROBBERY

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 9.96%

Peak  dis tance 0.38 miles
Exponen t 0.177651

COMMERCIAL ROBBERY

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 4.9455%

Peak  dis tance 0.625 miles
Exponen t 0.151319
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Ta ble  10 .3  (con t inu ed)

BANK ROBBERY

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 9.96%

Peak  dis tance 5.75 miles
Exponen t 0.139536

BURGLARY

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 20.55%

Peak  dis tance 0.38 miles
Exponen t 0.162907

AUTO THEFT

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 4.81%

Peak  dis tance 0.63 miles
Exponen t 0.212508

LARCENY 

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 4.76%

Peak  dis tance 0.38 miles
Exponen t 0.193015

ARSON  

Trunca ted
Nega t ive Exponen t ia l: Peak likelihood 38.99%

Peak  dis tance 0.38 miles
Exponen t 0.093469
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Da ta  S et D efin it ion

The steps a re r ela t ively easy.  F ir st , the u ser  defines  a  calibr a t ion  da ta  set  wit h
both  origin  and dest ina t ion  locat ions.  F igure 10.11 illust ra tes  th is process.  As wit h  the
prima ry and seconda ry files, th e rout ine reads ArcView  ‘sh p’, dBase ‘dbf’, Ascii ‘txt ’, and
MapIn fo ‘da t ’ files.   For both  the or igin loca t ion  (e.g., the home residen ce of the offender )
and t he dest ina t ion  loca t ion  (i.e., the cr ime loca t ion), th e names of the var iables for  the X
and Y coordin a tes must  be iden t ified as well a s t he t ype of coordin a te syst em  and da ta  un it
(see chapter  3).  In  the example, t he or igin  loca t ion s has va r iable names of H om eX and
HomeY and the dest in a t ion  loca t ion s has va r ia ble names of Inciden tX and Inciden tY for
the X and Y coordin a tes of the t wo locat ions r espectively.  However , any name is a cceptable
as long as th e two locat ions a re distinguished.

The u ser  sh ould specify whet her  ther e a re any miss ing values for  these four  fields
(X and Y coordin a tes  for  both  origin  and dest ina t ion locat ions ).  By defau lt , Crim eS tat will
ignore r ecords  wit h  blank values in  any of th e eligible fields  or r ecords  wit h  non-numer ic
values (e.g.,alph anumer ic character s, #, *).  Blanks  will a lways be excluded u n less t he user
select s <n one>.  Th ere a re 8 possible opt ion s:

1. <bla nk> fields a re au toma t ically excluded. This is  the defau lt
2. <none> indicates tha t  no records will be excluded.  If th er e is a  blank field,

Crim eS tat will tr eat it  a s a 0
3. 0 is excluded
4. –1 is excluded
5. 0 and –1 ind ica tes t ha t  both  0 an d -1 will be excluded
6. 0, -1 and 9999 indica tes t ha t  a ll th ree values (0, -1, 9999) will be excluded

Any other  numer ical va lue can  be t r ea ted as a  miss ing value by t ypin g it  (e.g.,
99)Mult iple n umer ical va lues can  be t r ea ted as m iss ing values by typin g them , separa t ing
each by commas (e.g., 0, -1, 99, 9999, -99).

The progr am will ca lcu la te the dis t ance between  the or igin  loca t ion  and the
dest ina t ion  loca t ion  for  each  record.  If the un its  a re sph er ica l (i.e., lat /lon), th en  the
ca lcu lat ions u se spher ica l geomet ry; if the un its  a re pr ojected (either  meters or feet ), th en
the calcu la t ion s a re Euclidean  (see chapter  3 for  deta ils).

K er n el  P a r a m et er s

Next , the u ser  must  define the ker nel paramet er s for calibra t ion.  Th er e a re five
choices tha t  have to be made (Figure 10.12):

1. The method of int erpola t ion .  As with  the two-dimensiona l ker nel techn ique
descr ibed in  chapter  8, t here a re five possible kernel fu nct ion s:



Jtc Calibration Data InputFigure 10.11:



Jtc Calibration Kernel ParametersFigure 10.12:
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A. Normal (the defau lt );
B. Qu ar t ic;
C. Tr ia ngu la r  (conica l);
D. A nega t ive exponent ia l (peaked); and
E. A unifor m (fla t ) dis t r ibu t ion .

2. Choice of ba ndwid th .  The bandwid th  is  the wid th  of the kernel fu nct ion .  F or
a  normal k ernel, it  is  the st andard devia t ion  of the normal d is t r ibu t ion
wh er ea s for  the oth er  four  ker nels (qua r t ic, t r iangular , nega t ive exponen t ia l,
and u n iform), it  is t he r adiu s of the circle defined  by the ker nel.  As with  the
two-dim ension  kernel t echnique, t he bandwid th  can  be fixed in  lengt h  or
ada pt ive (var iable in  len gth).  However , for  the one-dim en siona l ker nel, t he
fixed bandwidt h  is the defau lt s ince an  even est ima te over a n  equa l nu mber
of in ter va ls (bin s) is desir able. I f th e fixed bandwidt h  is select ed, the in ter va l
size  must  be specified and t he un it s (in  miles , kilomet er s, feet , met er s, a nd
naut ical m iles).  The defau lt  is 0.25 m ile in ter va ls.  I f th e a da pt ive
bandwidt h  is selected, th e user  must  ident ify th e minim um sa mple size th a t
the ban dwidt h  sh ould incorpora te; in t h is case, th e ban dwidt h  is widened
un til th e specified sam ple size is coun ted.

3. Th e n umber  of in ter pola t ion bins.  The bin s a re t he in ter va ls a long t he
dis tance scale (from 0 u p t o th e m aximum dis tance for a  journey to cr ime
t r ip) and a re u sed t o est imate t he den sit y fun ction .  Ther e a re t wo choices . 
F ir st , the u ser  can  specify the number  of in ter vals (the defau lt  choice wit h
100 in terva ls ).  In  th is  case, t he rout in e ca lcu la tes the maximum dis tance (or
lon gest  t r ip ) between  the or igin  loca t ion  and the dest in a t ion  loca t ion  and
divides it  by th e specified nu mber  of int ervals (e.g., 100 equa l-sized
in terva ls ). The in terva l s ize is  dependent  on the lon gest  t r ip  dis t ance
measured. Second, t he user  can  specify the dis t ance between  bin s (or  the
int erval size).  The defau lt choice is 0.25 miles, but  another  value can  be
en ter ed.  In  th is case , the r out ine counts ou t  in ter va ls of th e specified size
unt il it r eaches t he maximum t r ip dist ance.

4. The out pu t  un it s.  Th e u ser  specifies the un it s for  the den sit y est imate (in
unit s per  mile, k ilometer , feet , m eter s, a nd nau t ica l m iles).

5. The out pu t  calcula t ions.  Th e u ser  specifies wh et her  the out pu t  resu lt s a re in
pr obabilit ies (th e defau lt ) or  in  densit ies.  For probabilit ies, the sum of a ll
ker nel est ima tes will equa l 1.0.  For den sit ies, th e su m of a ll ker nel
est ima tes will equa l th e sa mple size.

Sa ved  Ca l ibra t ion  Fi l e

Third , th e user  must  define an  ou tpu t  file to sa ve th e empir ica lly det ermined
funct ion .  The funct ion  is  then  used  in  es t imat ing the likely home res idence of a  par t icu la r
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funct ion .  The choices a re to save the file as a  ‘dbf’ or  Ascii t ext  file.  The saved file then  can
be used in  the J t c rout in e.  F igure 10.13 illu st ra tes the outpu t  file format .

C a l i br a t e

Four th , th e calibrat e but ton r un s th e rout ine.  A calibrat ion window appear s an d
indica tes  the progress  of the calcula t ions .  When  it  is fin ish ed, the u ser  can  view a  graph
illust ra t ing the es t imated dis t ance decay function (Figu re 10.14).  The purpose is t o provide
qu ick dia gnost ics to th e u ser  on t he fun ction and select ion  of the ker nel pa ramet er s.  Wh ile
th e gra ph can  be print ed, it  is not a  high qua lity print.  If a h igh qua lity gra ph is needed,
the outpu t  calibra t ion file should  be im por ted in to a gr aph ics progra m. 

Examples  from Balt imore  County

Let ’s  illu st r a t e t h is  method  by showing the r esult s  for  t he same data  set s  t ha t  were
ca lcu la ted above in  the mathemat ica l sect ion  (figures 10.4-10.8).  In  a ll cases, t he normal
ker nel function  wa s u sed.  The ba ndwidt h  wa s 0.25 m iles  except  for  the ba nk robber y da ta
set , which  had only 176 cases, and t he homicide da ta  set , which  on ly had 137 cases;
because of the small sample sizes, a  bandwid th  of 0.50 miles was used for  these two da ta
set s.  The in terva l wid th  selected was a  dis t ance of 0.25 miles between  bin s (0.5 miles for
bank  robberies an d homicides) an d probabilities were out put .

F igure 10.15 shows the kernel est im ate for  a ll cr im es (41,426 t r ips).  A fr equency
dis t r ibu t ion was ca lcula ted for  the same n umber  of in ter va ls a nd is  overla id on  the gr aph .
It  was selected to be  comparable to the mathemat ica l fu nct ion  (see figure 10.4).  Note how
closely the kernel es t imate fit s  the da ta  compared  to the nega t ive exponen t ia l
ma th emat ical fun ction.  The fit  is good for every value but t he peak value; th at  is becau se
the ker nel averages severa l in tervals t ogeth er  to pr odu ce an  est ima te.

F igure 10.16 sh ows t he ker nel est ima te for  lar ceny th eft s.  Again , th e ker nel
met hod pr oduces a  much closer  fit a s a  compa r ison  wit h  figur e 10.5 will show.  Figure
10.17 shows t he ker nel es t imate for  veh icle t hefts.  F igure 10.18 sh ows the ker nel es t imate
for  bank robber ies and figure 10.19 shows the kernel est im ate for  homicides.  An  in spect ion
of these gr aphs shows how well the kernel fu nct ion  fit s the da ta , com pared to the
mathemat ica l funct ion , even  when the da ta  a re irr egula r ly spa ced (in  vehicle th eft s, ban k
robber ies, a nd homicides).  F igure 10.20 compares the dis t ance decay fu nct ion s for
homicides committ ed agains t  st r angers compa red to homicides committ ed agains t  kn own
victims.

In  shor t , t he J t c ca libra t ion  rout in e a llows a  much closer  fit  to the da ta  than  any of
the simpler  mathemat ica l funct ions.  While it ’s possible to produce a  complex
mathemat ica l fu nct ion  tha t  will fit  the da ta  more closely (e.g., h igher  order  polyn omia ls ),
the ker nel met hod is m uch  simpler  to use a nd gives a  good a ppr oximat ion  to the da ta .



Journey to Crime Travel Demand Functions
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Jtc Calibration Graphic OutputFigure 10.14:



Journey to Crime Distances: All Crimes
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Journey to Crime Distances: Larceny
Figure 10.16:
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Journey to Crime Distances: Vehicle Theft
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Figure 10.17:



Journey to Crime Distances: Bank Robbery
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Journey to Crime Distances: Homicide
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Journey to Crime Distances: Homicide by Victim Relationship
Figure 10.20:
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Using Journey-To-Crime Routine for Journey-After-Crime Analysis 
 

Yongmei Lu 
Department of Geography 

Southwest Texas State University 
San Marcos, TX 

 
 The study of vehicle theft recovery locations can fill a gap in the knowledge 
about criminal travel patterns.   Although the journey-to-crime routine of CrimeStat 
was designed to analyze the distance between offense location and offender’s 
residential location, it can be used to describe the distance between vehicle theft 
location and the corresponding recovery location. 
 
 There were more than 3000 vehicle thefts in the City of Buffalo in 1998.  
Matching the offenses with vehicle recoveries in the same year, 1600 location pairs 
were identified for a journey-after-vehicle-theft analysis. To evaluate the 
randomness of the distances, 1000 groups of simulations were conducted. Every 
group contains 1600 simulated trips of journey-after-vehicle-theft. The results 
indicate that 1) short distances dominate journey-after-vehicle-theft, and 2) the 
observed trips are significantly shorter than the random trips given the distribution 
of possible vehicle theft and recovery locations. 
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Using Journey to Crime for Different Age Groups of Offenders 
 

Renato Assunção, Cláudio Beato, Bráulio Silva 
CRISP, Universidade Federal de Minas Gerais , Brazil  

 
CrimeStat offers a method for analysing the distance between the crime scene 

and the residence of the offender using the journey to crime routine within the 
spatial modeling module.   We analysed homicide incidents in Belo Horizonte, a 
Brazilian city of 2 million inhabitants, for the period January 1996 – December 
2000.  We used 496 homicide cases for which the police identified an offender who 
was living in Belo Horizonte, and for which both the crime location and offender 
residence could be identified. The cases were divided into three groups according to 
the offender‘s age: 1) 14 to 24 (N=201); 2) 25 to 34 (N=176); and 3) 35 or older 
(N=119).  The journey to crime calibration routine was used to produce a probability 
curve P(d) that gives the approximate chance of  an offender travelling 
approximately distance  d to commit the crime.  

 
We used the normal kernel, a fixed bandwidth of 1000 meters, 100 output 

bins, and the probability (or proportion of all points) option, rather than densities. 
This is to allow comparisons between the three age groups since they have different 
number of homicides. We tested for each age group separately and directed the 
output to a text file to analyse the three groups simultaneously.  

 
The green, blue, and purple curves are associated with the 14-24, 25-34, 35+ 

year olds respectively.  There are more similarities than differences between the 
groups.  Most homicides are committed near to the residence of the offenders with 
between 60% t o 70% closer than one mile from their home. However, the curve does 
not vanish totally even for large distances because there are around 15% of 
offenders, of any age group, travelling longer than 3 miles to commit the crime.  The 
oldest offenders travel longer distances, on average, followed by the youngest group, 
with the 25-34 year olds travelling the shortest distances.  
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The  J ou rn e y t o Crim e  Ro u tin e  Us in g t h e  Calib rat e d F ile

After  the dis t ance decay fu nct ion  has been  ca libra ted and saved as a  file, t he file can
be used t o ca lcu lat e the likelihood su r face for  a  ser ial offender . The u ser  specifies the name
of the a lready-ca libra ted  dis tance funct ion  (as  a  ‘dbf’ or  an  Ascii t ext  file) and  the ou tpu t
forma t .  As  with  the ma themat ica l rou t ine, t he ou tpu t  can  be to ArcView , MapIn fo,
Atlas*GIS , S urfer for Windows, S pat ial Analyst , an d a s a n  Ascii gr id file which  can  be rea d
by ma ny other  GIS pa cka ges.  All bu t  S urfer for Windows r equire t ha t  the reference grid be
crea ted by Crim eS tat.

The result is produced in t hr ee steps:

1. The r out ine calcula tes the dist ance between  each r eferen ce cell of the gr id
and each  in ciden t  loca t ion ;

2. For  each  dis t ance measured, t he rout in e look s up the ca lcu la ted va lu e from
th e saved calibrat ion file; an d 

3. For  each  reference gr id  cell, it  sums the va lu es of a ll the in ciden t s to produce
a  single likelihood est ima te.

Ap pli ca ti on  o f th e  Ro u ti ne

To illus t ra te the techniques , th e resu lts  of the two methods on a  single case a re
compa red.  The case h as been  selected because t he rou t ines  accura tely est ima te the
offender ’s r es idence. This was done to dem ons t ra te h ow the t echniqu es work.  In  the n ext
section, I’ll ask  the qu est ion  about  how accura te t hese m et hods a re in  gener a l.

Th e case in volved a  man who had commit ted 24 offen ses.  These in clu ded 13 theft s,
5 bu rgla r ies, 5 assau lt s, a nd one rape.  The spa t ia l d is t r ibu t ion  was va r ied; many of the
offenses wer e clus tered bu t  some wer e scat t ered.  Since th ere were multiple t ypes of cr imes
committ ed by th is individua l, a  decision  had t o be made over  which  model to use t o
est ima te the individua l’s r esiden ce.  In t h is case, th e theft  (lar ceny) model was selected
sin ce tha t  wa s t he domin ant  type of crim e for  th is in dividua l.  

For  the mathemat ica l fu nct ion , t he t runca ted nega t ive exponent ia l was chosen  from
table 10.3 with  the paramet er s bein g:

Peak likelihood 4.76%
Peak  dis tance 0.38 miles
Exponen t  0.193015

For t he ker nel den sit y model, t he calibr a ted fun ction  for  la rceny wa s select ed (figure
10.16).
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Figure 10.21 sh ows t he r esu lt s of the es t imat ion  for  the t wo met hods.  Th e out pu t  is
from S urfer for Windows (Golden  Software, 1994).   The left  pane shows the resu lt s of the
mathem at ical function wh ile the r ight  pa ne shows t he r esu lt s for  the ker nel densit y
funct ion .  The in ciden t  loca t ion s a re shown as cir cles while the actua l r esidence loca t ion  of
the offender  is  shown as a  square.  Sin ce th is  is  a  sur face model, the h ighest  loca t ion  has
th e highest pr edicted likelihood.

In  both  cases, t he models  predict ed qu it e accura tely.  The discrepancy (er ror )
between  the predict ed peak loca t ion  and the actua l r esidence loca t ion  was 0.66 miles for
the mathemat ica l fu nct ion  and 0.36 miles for  the kernel densit y fu nct ion .  F or  the
mathemat ica l m odel, the actua l r esidence loca t ion  (square) is  seen  as sligh t ly off from the
pea k of the su r face whereas for  the ker nel dens ity model the discrepa ncy from the pea k
cannot  be seen .

Never theless, th e differences in  the two su r faces sh ow dist inctions.  The
mathemat ica l model ha s a  sm ooth  decline from t he pea k likelihood loca t ion , almost  like a
cone.  The kernel densit y m odel, on  the other  hand, shows a  more ir regu la r  dis t r ibu t ion
with  a  pea k loca t ion  followed by a sur rounding ‘t rough’ followed a  pea k ‘r im’.  This is du e to
the ir regu la r  dis t ance decay fu nct ion  ca libra ted for  la rceny (see figure 10.16).  But , in  both
cases, t hey more or less iden t ify th e actua l res idence loca t ion  of the offender .

Cho ic e  of Calibra tio n  Sa m ple

The ca libra t ion  sa mple is cr itical for  eith er  method.  Ea ch method a ssu mes t ha t  the
dis t r ibu t ion of th e ser ia l offender  will be sim ila r  to a sample of ‘like’ offenders.  Obviously,
dis t in ct ion s can  be made to make the ca libra t ion  sample more or  less sim ila r  to the
pa r t icu lar  case.  For example, if a  dist ance decay funct ion  of a ll cr imes  is selected, th en  a
model (of eit her  the mathemat ica l or  kernel densit y for m) will h ave less differen t ia t ion
than  for  a d ista nce decay funct ion  from a specific type of cr ime.  Similar ly, breaking down
the type of cr ime by, say, mode of oper a t ion  or  t ime of da y will produ ce bet t er
differen t ia t ion  than  by groupin g a ll offenders of the same type together .  This  process can
be taken  on  in defin it ely un t il there is  too lit t le  da ta  to make a  reliable  est im ate.  An
ana lyst  sh ould t ry to find  as close a  ca libra t ion  sample to the actua l as  is possible, given
the lim ita t ions  of the da ta .  

For  exam ple, in  our  ca libra t ion  da ta  set , th ere were 4,694 burgla ry incident s wh ere
both  the offender ’s  home res idence and the inciden t  loca t ion  were known . The approxima te
t ime of the offense for  2,620 of the bur gla r ies was known and, of these, 1,531 occur red a t
n igh t  between  6 pm  and 6 am.  Thu s, if a  pa r t icu lar  ser ial burgla r  for  whom the police are
in teres ted  in  ca tch ing t ends to commit  mos t  of h is  burgla r ies  a t  n igh t , then  choos ing a
ca libra t ion  sa mple of n igh t t ime bu rgla r s will gener a lly pr odu ce a  bet ter  est ima te than  by
groupin g all bur gla r s t ogeth er .  Similar ly, of the 1,531 n igh t t ime bu rgla r ies, 409 were
commit ted by in dividua ls  who had a  pr ior  rela t ion sh ip  wit h  the vict im .  Aga in , if the
ana lyst s su spect t ha t  the bur gla r  is robbing homes of people he kn ows or is a cqua int ed
wit h , then  selectin g the subset  of n ight t ime bu rglar ies commit ted against  a  known vict im



           Mathematical Model:
Truncated Negative Exponential Kernel Density Model

Predicted and Actual Location of Serial Thief
Figure 10.21:

Man Charged with 24 Offenses in Baltimore County
Predicted with Mathematical and Kernel Density Models for Larceny
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would p roduce even  bet t er  differen t ia t ion in  the m odel t han  taking a ll n ight t ime bu rgla r s. 
However, event ua lly, with  fur ther  su b-groupin gs there will be insu fficient  da ta .

This poin t  has been  ra ised in a  recent  deba te.  Van  Koppen  and De Keijser  (1997)
argued tha t  a  dis t ance decay fun ction  tha t  combin ed mult iple  inciden t s commit ted by t he
sa me individua ls could dist or t  the est ima ted r elat ionsh ip compa red t o select ing incident s
comm itted by different  individua ls.6  Renger t , P iquero and J ones (1999) a rgu ed tha t  such  a
dist r ibut ion  is never theless m eaningfu l.  In  our  lan gua ge, these a re two differen t  su b-
gr oups - per sons commit t in g m ult ip le offenses compared to persons commit t in g on ly one
offense.  Combining th ese t wo su b-groups  int o a  single ca libra t ion  da ta  set  will on ly mean
tha t  the resu lt will ha ve less d ifferen t iat ion  in pr edict ion  than  if the su b-groups  were
sepa ra ted out .  

Actua lly, there is  not  much  d ifference, a t  leas t  in  Ba lt imore County.  F rom the
41,426 cases, 18,174 were committ ed by persons wh o were only list ed once in t he da tabase
while 23,251 offenses wer e committ ed by persons wh o were list ed t wo or  more t imes  (7,802
individua ls).  Cat egor izing th e 18,174 cr imes  as committ ed by ‘single inciden t  offender s
and the 23,251 cr im es as commit ted by ‘mult ip le in ciden t  offenders’, t he densit y d is t ance
decays  funct ion s were calcu la ted usin g t he kernel densit y m ethod (Figure 10.22).

The dist r ibut ions a re remarka bly similar .  Ther e are some su bt le differences.  The
average journey t o cr im e t r ip  dis t ance made by a  sin gle in ciden t  offender  is  lon ger  than  for
mult iple in ciden t  offender s (4.6 m iles compared to 4.0 miles, on average); the differ en ce is
h igh ly sign ificant  (p#.0001), pa r t ly because of the ver y la rge sample sizes.   H owever , a
visu a l inspection  of the dist ance decay functions shows t hey a re similar .  The single
in ciden t  offenders tend to have sligh t ly more t r ips near  their  home, s ligh t ly fewer  for
dis tances between  about  a  mile u p t o th ree m iles , and s ligh t ly more longer  t r ips .  Bu t , the
differen ces a re n ot very la rge.  

There are severa l rea sons for  the similar ity.  Fir st , some of the ‘single inciden t
offenders ’ a re actua lly mult ip le inciden t  offenders  who have not  been  charged  with  other
inciden t s.  Second, some of the single inciden t  offender s a re in  the process of becoming
multiple incident  offender s so th eir beh avior  is pr obably similar .  Third, th ere may not be a
major  differ en ce in t r avel pa t t er ns by the number  of offens es an  individua l comm its,
cer t a inly compa red t o the major  differences by type of cr ime (see gra ph s a bove).  In oth er
words , the dist inction bet ween  a  sin gle offender  crim e t r ip a nd a  mult iple offen der  crim e
t r ip is  just  anoth er  su b-group  compa r ison  and, a pparen t ly, not t ha t  impor tan t . 
Never theles s, it  is  impor t an t  t o choose an  appropria t e s ample from which  to es t ima te a
likely home base loca t ion  for  a  ser ia l offender .  The method depends on a  sim ila r  sample of
offenders for  compar ison .

Sam ple Da ta Se ts  for Jou rne y to Crime Rou tine s

Three sa mple da ta  set s from Ba ltim ore County ha ve been pr ovided for  the journey
to cr ime r out ine. Th e da ta  set s a re simula ted and do not  represen t  rea l da ta .  The firs t  file
- J t cTest 1.dbf, ar e 2000 simu lat ed r obber ies while the second file - J t cTest 2.dbf, ar e 2500
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Hot Spot Verification in Auto Theft Recoveries 
 

Bryan Hill 
Glendale Police Department 

Glendale, AZ 
 

We use CrimeStat as a verification tool to help isolate clusters of activity 
when one application or method does not appear to completely identify a problem.  
The following example utilizes several CrimeStat statistical functions to verify a 
recovery pattern for auto thefts in the City of Glendale (AZ). The recovery data 
included recovery locations for the past 6 months in the City of Glendale which were 
geocoded with a county-wide street centerline file using ArcView.   
 

First, a spatial density “grid” was created using Spatial Analyst with a grid 
cell size of 300 feet and a search radius of 0.75 miles for the 307 recovery locations.  
We then created a graduated color legend, using standard deviation as the 
classification type and the value for the legend being the CrimeStat “Z” field that is 
calculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the map, the K-means (red ellipses), Nnh (green ellipses) and Spatial 
Analyst grid (red-yellow grid cells) all showed that the area was a high density or 
clustering of stolen vehicle recoveries.  Although this information was not new, it did 
help verify our conclusion and aided in organizing a response 



Constructing Geographic Profiles  
Using the CrimeStat Journey-To-Crime Routine 

 
Josh Kent, 

Michael Leitner, 
Louisiana State University 

Baton Rouge, LA 
 

The map below shows a geographic profile constructed from nine crime sites 
associated with a Baton Rouge serial killer, Sean Vincent Gillis, who was 
apprehended on April 29, 2004 at his residence in Baton Rouge.  Eight of the nine 
are body dump sites and the ninth is a point of fatal encounter.  All crime sites were 
located in the City of Baton Rouge and surrounding parishes. Gillis’s hunting style 
can best be described as that of a typical ‘localized marauder’. 
 

The Journey-to-crime routine, implemented in CrimeStat , was applied to 
simulate the travel characteristics of Gillis to and from the known crime sites.  
Gillis’s travel behavior was calibrated with different mathematical functions that 
were derived from the known travel patterns of 301 homicide cases in Baton Rouge. 
 

The profile was estimated using Euclidean distance and the negative 
exponential distance decay function.  It predicts the actual residence of Gillis 
extremely accurately.  The straight-line error distance between the predicted and 
the actual residence is only 0.49 miles.  The proportion of the entire study area that 
must be searched in order to successfully identify the serial offender’s residence is 
0.05% (approximately 0.98 square miles out of a 2094.75 square miles study area). 
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simula ted burgla r ies.  Bot h  files have coor dina tes for  an  or igin  loca t ion  (H om eX, H om eY)
and a  dest ina t ion  loca t ion  (IncidentX, Incident Y).  User s can  use t he ca libra t ion  rou t ine t o
ca lcu la t e t he t r avel d is t ances  between  the or igins and the des t ina t ions.  A th ird dat a  set  -
Ser ial1.dbf, ar e simulat ed incident  loca t ions for  a  ser ial offender .  User s can  use t he J t c
est imat ion  rout ine t o iden t ify the likely residence locat ion  for  th is in dividua l.  In  running
th is r out ine, a  refer en ce grid n eeds t o be overla id (see chapt er  3).  For  Ba lt imore County,
appr opr iat e coordina tes for  the lower -left  corner  a re -76.910 longitude a nd 39.190 la t itude
and for  the upper -r igh t  corner  a re -76.320 longitude a nd 39.720 la t itude.

Draw  Crime Trips

The J ourney to Crime modu le includes one u t ility th a t  can  help visu a lize the
pa t t er n  before select ing a  pa r t icula r  est imat ion  model.  This is  a  Dr aw Cr ime Tr ips  rout ine
tha t  simply dra ws lines  between  the or igin a nd des t ina t ion  of individua l cr ime t r ips.  The
X an d Y coordina tes of an  origin and destina tion locat ion a re input  an d th e rout ine draws a
line in  ArcView  ‘sh p’, MapIn fo ‘mif’, Atlas*GIS  ‘bna ’ or  Ascii forma t .

F igure 10.23 illust ra tes t he dr awing of the kn own t ravel dist ances for  444 ra pe
cases for  which  the residence loca t ion  of the rapis t  was known.  Of the 444 cases, 113 (or
25.5%) occur red in  the r es idence of th e r apis t .  However , for  the r em ain ing 331 cases , the
rape loca t ion  was not  the residence loca t ion .  As seen , m any of t he t r ips a re of qu it e lon g
dis tances.  Th is would su ggest  the u se of an  journey to cr ime fun ction tha t  has m any t r ips
a t  zero dis t ance bu t  wit h  a  more gr adua l decay fu nct ion .

How Accurate  are  the  Methods?

A cr itical ques t ion  is how accura te a re these m ethods?  The journey to cr ime m odel
is ju st  tha t , a  model.  Wh et her  it  involves u sin g a  mathem at ical function  or a n  em pir ically-
der ived one, the a ssumpt ion  in  the J t c rout ine is t ha t  the dist r ibu t ion  of inciden t s will
provide in format ion  about  the home base loca t ion  of the offender .  In  th is  sense, it ’s not
un like t he wa y most  crim e ana lyst s will work  wh en  they a re t rying to find a  ser ia l
offender .  A typ ica l approach  will be to p lot  the d is t r ibu t ion  of inciden t s  and rou t inely
search a  geograph ic ar ea  in  and a roun d a  ser ia l crim e pa t t er n , notin g offenders who ha ve
an  ar res t  h ist ory m atchin g case a t t r ibu tes  (MO, type wea pon , su spect  descr ipt ion, et c.). 
Because a  h igh  pr oport ion  of offenses a re committ ed with in a  sh or t  dist ance of offender
residence’s, t he m et hod can  frequen t ly lead t o th eir  appreh en sion.  But , in doing th is
met hod, the ana lyst s a re not u sin g a  soph ist icat ed st a t ist ical m odel.

Tes t S am ple  of Se rial Offe n de rs

To explore the accuracy of the appr oach , a sm all sa mple of 50 ser ial offender s wa s
isola ted from the da tabase and used as a  t a rget  sample to test  the accuracy of t he methods.
The 50 offender s a ccounted for  520 individua l cr ime incident s in  the da tabase.  To test  the
J tc method system at ically, the followin g dis t r ibu t ion  wa s selected (ta ble 10.4).  The sample
was n ot  random, but  was selected t o pr odu ce a  ba lan ce in t he number  of inciden t s
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committ ed by each individu a l an d t o, roughly, app roximate the dist r ibut ion  of inciden t s by
ser ia l offen ders.  E ach of the 50 offen ders was isola ted as a  sepa ra te file so th a t  each could
be a na lyzed in  Crim eS tat.

Ident i fy ing  the  Crime Type

Each  of the 50 offender s wa s cat egor ized by a crim e type.  Only two of the offender s
committ ed t he sa me cr ime for  a ll their offenses; most  committ ed t wo or  more differen t
types of cr imes .  Arbitr a r ily, each offender  was t yped according to th e cr ime t ype th a t
he/sh e most frequ ent ly committ ed; in t he two cases wh ere t here wa s a  t ie between  two
crim e t ypes , the m ost  severe wa s selected (i.e., per sona l cr ime over pr oper ty cr ime).  While
I recogn ize tha t  there is  arbit ra r in ess in  the approach , it  seemed a  pract ica l solu t ion .  An y
er ror  in cat egor izing an  offender  would be applicable to all th e methods.  The cr ime t ypes
for  the 50 offen ders approxim ately mir rored the dis t r ibu t ion  of inciden t s:  la rcen y (29);
vehicle theft  (7); burgla ry (5); robbery (5); assau lt  (2); bank robbery (1); and ar son (1).

Id e n ti fy in g  th e  Ho m e  B as e  an d  In c id e n t Lo ca ti on s

In  the da tabase, each  of the offenders was list ed as having a  residence loca t ion .  F or
the ana lysis, th is was t aken  as t he origin  loca t ion of th e jour ney t o cr ime t r ip.  S imila r ly,
the inciden t  loca t ion  was t aken  as t he destina tion  for  the t r ip. Oper a t iona lly, th e crim e t r ip
is t aken  as t he dist ance from t he origin  locat ion  to th e dest ina t ion  locat ion .  However , it  is
very possible tha t  some cr im e t r ips actua lly s t a r t ed from other  loca t ion s. F ur ther , m any of
these individu a ls ha ve moved th eir r esidences over t ime; we on ly ha ve the last  kn own
residence in t he da taba se. Un for tuna tely, ther e wa s n o other  informat ion  in  the digita l
da tabase t o a llow more accura te ident ifica t ion  of the home loca t ion .  In oth er  words, t here
may be, a nd p robably a re, numer ous  er rors  in  the es t imat ion of th e jour ney t o cr ime t r ip. 
However , these er rors  would  be s imilar  across  a ll met hods a nd should not a ffect  their
rela t ive accuracy.

Evaluated  Methods

Eleven  methods were compared in  es t im at in g t he likely residence locat ion  of the
offenders .  Four  of the methods used  the J t c rou t ines  and seven  were s imple spa t ia l
dis t r ibu t ion  methods (table 10.5).

The mean  center  and cent er  of minim um dist ance are discussed in cha pt er  4.  The
cen ter  of min imum dis t ance, in  pa r t icu la r , is  more or  les s t he geograph ic cen ter  of
dis t r ibu t ion  in  tha t  it  ignores the va lu es of par t icu la r  loca t ion s; thus, locat ion s tha t  a re far
away fr om the clu ster  (ext reme va lu es) have no effect  on  the resu lt .  When the cen ter  of
minim um dist ance is ca lcu lat ed on a  road n etwork in  which  each  segment  is weighted by
t ravel t im e or  speed, t he resu lt  is  the cen ter  of min im um t ravel t im e, t he poin t  a t  which
t ravel t ime t o each  of the inciden t s is m inim ized.  The d irectiona l mea n , tr ian gula ted
mean , geomet r ic and h armonic means a re discussed in cha pt er  4.
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Ta ble  10 .4

Ser ia l Offende rs  Used  in  Accuracy  Evaluat ion

N u m be r o f Cri m e s
Num ber  of Committed  by
Offe n de rs Each Pe rson

4 3
4 4
4 5
4 6
4 7
4 8
3 9
3 10
3 11
2 12
2 13
2 14
2 15
1 16
1 17
1 18
1 19
1 20
1 21
1 22
1 24
1 33

   _________      _________
          50           520      
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Ta ble  10 .5

Com parison  Meth ods  for Esti m ati n g  th e  Ho m e  Base  of a  Se ria l Offen de r

Jou rney  to  Cr ime Methods

Mathemat ica l model for  a ll cr imes

Math emat ical model for specific crime type

Kernel dens ity model for  a ll cr imes

Kernel den sit y model for specific cr ime t ype

Spat ia l Dis tribut ion  Methods

Mean center

Center  of min imum d is tance

Cen ter  of min imum t r avel t ime 
(ca lcu lat ed on road n etwork weighted by tr avel  t ime)

Directiona l mea n  (weight ed) ca lcu lat ed with  ‘lower  left  corner ’
as or igin

Tr iangula ted  mean

Geomet r ic mean

Harmonic mean

The Test

Each of these eleven  methods were run  aga in st  each  of the files crea ted for  the
ser ial offender s.  For t he seven ‘means’ (mean  center , geomet r ic mean , ha rmonic mean ,
d irect iona l mean , t r iangu la ted  mean , cen ter  of min imum d is tance, cen ter  of min imum
travel t im e), t he mean  was it self t he best  gu ess for  the likely residence locat ion  of the
offender .  F or  the four  journey t o cr im e funct ion s, t he gr id  cell wit h  the h ighest  likelihood
est ima te was t he best  guess  for  the likely res idence loca t ion  of the offender .

Measurem ent  o f  Error

For  each  of the 50 offender s, err or  was defined a s t he dist ance in m iles between  the
‘best  guess ’ and t he actua l loca t ion .  For each  offender , th e dist ance between  the est ima ted



10.73

home base (the ‘best  gu ess’) and the actua l r esidence loca t ion  was ca lcu la ted usin g dir ect
dis t ances.  Table 10.6 presen t s the resu lt s.  The da ta  show the er ror  by m ethod for  each  of
the 50 offenders.  The th ree r igh t  colu mns show the average er ror  of a ll methods and the
minimum er ror a nd m aximum er rors  obta ined by a  met hod.  The m et hod with  the
minim um er ror  is boldfaced; for  some cases , two met hods a re t ied for  the minim um. The
bot tom th ree rows  show the median  er ror , the average er ror  and  the s t andard  devia t ion  of
the er rors  for  ea ch m et hod across a ll 50 offen ders. 

There a re a  number  of conclu sion s from the resu lt s.  F ir st , t he degr ee of precis ion
for  any of t hese methods va r ies considerably.  The precis ion  of the est im ates va ry fr om a
low of 0.0466 miles (about  246 feet ) to a  h igh  of 75.7 miles.  The overa ll precis ion  of the
methods is  not  very h igh  and is  h igh ly va r ia ble.  There are a  number  of possible reasons for
th is, some of wh ich h ave been  discussed a bove.  Ea ch of the m et hods produces a  sin gle
parameter  from what  is , essen t ia lly, a  probabilit y d is t r ibu t ion  whereas the dis t r ibu t ion  of
many of t hese in ciden t s a re widely dispersed.  F ew of the offenders had such  a
concen t r a t ed  pa t t ern  tha t  on ly a  single loca t ion  was possible.  Since these a re p robabilit y
dist r ibut ions, not everyone follows t he ‘cen t ra l ten den cy’.  Also, some of these offender s
may have moved du r ing the per iod in dicated by the inciden t s, t her eby sh iftin g the spa t ia l
pa t t ern  of inciden t s a nd m akin g it  difficu lt t o ident ify th e las t  residen ce.

A second  conclus ion  is  tha t , for  any one offender , the methods p roduce s imila r
resu lt s.  F or m any of th e offender s t he differ en ce between  the bes t  est imate (th e m inimum
error) an d th e worst  estimat e (th e maximu m err or) is not great .  Thus, the simple meth ods
are genera lly a s good (or  bad) as the more sophis t ica ted methods.

Thir d, a cross a ll methods, t he cen ter  of min im um t ravel t im e, which  is  ca lcu la ted on
a  road network (see chapter s 3 and 16), a nd it ’s dis t ance-based ‘cousin ’ - the cen ter  of
minimum t ravel t ime, had t he lowest  average er ror.  Th us, t he approximate geogra ph ic
cen ter  of the d is t r ibu t ion  where t r avel t ime to each  of the inciden t s  was  min imal p roduced
as good a n  est imate a s t he m ore sophist icat ed met hods.  H owever , it  wa sn ’t  pa r t icula r ly
close (3.8415 m iles, on average).  The worst  method was t he t r iangula ted mea n; it  had a n
aver age er ror of 7.6472 miles .  The t r iangula ted mea n  is p roduced by vector  geomet ry and
will not  necessa r ily cap ture the cen ter  of the d is t r ibu t ion . Other  than  th is , there were not
grea t  differences. This r einforces t he poin t  above th a t  the methods a re a ll, more or  less,
descr ibing the cent ra l ten dency of the dist r ibu t ion .  For offender s t ha t  don’t  live in the
center  of their  dis t r ibu t ion, t he er ror of a m et hod will n ecessa ry be h igh .

Lookin g a t  each  of the 50 offenders, t he methods va ry in  their  effica cy.  For
exa mple, t he J t c kernel fu nct ion  for  a ll cr im es was the best  or  t ied for  best  for  17 of the
offenders, bu t  was a lso the worst  or  t ied for  worst  for  9.  Sim ila r ly, t he J t c kernel fu nct ion
for  the specific cr imes  was best  or  t ied for  best  for  8 of the offender s, but  worse for  4.  Even
the most  consist en t   was best  for  4 offender s, but  a lso worst  for  one.  On t he other  hand,
the t r ia ngu la ted mean , which  had the worst  overa ll er ror , produced the best  est im ate for  9
of the in dividua ls while it  pr oduced t he wor st  est imate for  25 of th e in dividua ls.  Thus, t he
t r ian gula ted m ean  tends t o be very accura te or  very ina ccura te; it h ad t he h ighest
va r ia nce, by far .



Table 10.6

Accuracy of Methods for Estimating Serial Offender Residences
 (N= 50 Serial Offenders)

* Center of Center of *
Number Primary * Mean Minimum Minimum Triangulated Geometric Harmonic Jtc Kernel: Jtc Kernel: Jtc Math: Jtc Math: * All Methods
of Crime * Center Distance Travel Time Mean Mean Mean All Crimes Crime Type All Crimes Crime Type * Average Minimum Maximum

Dataset Crimes Type * Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) * Error Error Error
------------------- -------------------- --------------------- * ---------------------------- ----------------------------------------------------------------------------------- -------------------------- ----------------------------------------------------- --------------------------- ----------------------- ------------------------- * -------------------- ------------------------------ ---------------------

3A 3 Larceny * 31.5991 32.4477 32.2975 32.4109 31.5995 31.6000 32.7824 32.7880 32.7824 32.7880 * 32.3095 31.5991 32.7880
3B 3 Larceny * 13.2303 12.1683 12.1207 24.1531 13.2311 13.2319 10.7526 14.4929 10.7526 11.2501 * 13.5384 10.7526 24.1531
3C 3 Bank robbery * 2.8348 0.9137 0.9588 2.7767 2.8335 2.8322 0.6775 5.8416 0.6775 6.0946 * 2.6441 0.6775 6.0946
3D 3 Burglary * 2.9733 3.2603 2.6907 6.1013 2.9728 2.9724 4.6038 3.3883 3.3882 3.7931 * 3.6144 2.6907 6.1013
4A 4 Vehicle theft * 4.2436 4.2670 4.3341 3.8217 4.2436 4.2436 4.2527 4.2364 4.2527 4.2590 * 4.2154 3.8217 4.3341
4B 4 Larceny * 1.9618 0.3100 0.1158 2.0563 1.9621 1.9623 0.3125 0.2018 0.3125 0.2784 * 0.9473 0.1158 2.0563
4C 4 Larceny * 4.4733 4.4733 4.5096 4.6789 4.4733 4.4733 4.9681 4.3563 4.2637 4.3563 * 4.5026 4.2637 4.9681
4D 4 Assault * 0.2925 0.1905 0.0084 0.0466 0.2925 0.2926 0.0703 0.0703 0.0703 0.4560 * 0.1790 0.0084 0.4560
5A 5 Larceny * 17.3308 16.6459 17.0832 17.8985 17.3292 17.3276 15.9738 17.8655 15.9739 16.4526 * 16.9881 15.9738 17.8985
5B 5 Larceny * 1.3609 0.2481 0.0565 1.7733 1.3586 1.3564 0.2068 0.6974 0.5140 0.6974 * 0.8269 0.0565 1.7733
5C 5 Larceny * 2.2458 2.6832 2.7443 16.4518 2.2450 2.2442 2.7886 2.4205 2.7886 3.0922 * 3.9704 2.2442 16.4518
5D 5 Larceny * 0.9169 0.2250 0.8021 0.2371 0.9171 0.9174 0.1577 0.4267 0.1577 0.4267 * 0.5184 0.1577 0.9174
6A 6 Larceny * 5.1837 5.2081 5.0644 7.9621 5.1837 5.1837 5.1271 4.8554 4.9393 5.2256 * 5.3933 4.8554 7.9621
6B 6 Vehicle theft * 1.3720 1.1869 1.1535 0.9625 1.3710 1.3700 3.1126 2.3800 1.3566 2.0831 * 1.6348 0.9625 3.1126
6C 6 Larceny * 1.3199 0.3157 0.0051 1.7928 1.3192 1.3184 0.2580 0.5272 0.2580 0.5272 * 0.7641 0.0051 1.7928
6D 6 Larceny * 3.2458 2.3324 3.2838 6.5209 3.2431 3.2405 1.2506 2.6253 1.9718 1.9718 * 2.9686 1.2506 6.5209
7A 7 Larceny * 3.9023 3.4185 3.1998 2.3176 3.9022 3.9021 2.7419 3.0532 3.1364 3.0532 * 3.2627 2.3176 3.9023
7B 7 Larceny * 12.4100 9.2973 9.9031 14.8293 12.4107 12.4115 8.5357 8.6148 8.5357 8.8275 * 10.5776 8.5357 14.8293
7C 7 Burglary * 5.0501 7.1477 6.4354 10.8567 5.0481 5.0460 7.9975 7.9975 7.9975 7.6274 * 7.1204 5.0460 10.8567
7D 7 Larceny * 2.2686 0.7733 0.3223 75.7424 2.2684 2.2682 0.0892 0.7191 0.0892 0.7191 * 8.5260 0.0892 75.7424
8A 8 Larceny * 6.0298 6.0165 6.3167 6.2653 6.0264 6.0229 8.4210 6.2962 6.2022 6.1166 * 6.3714 6.0165 8.4210
8B 8 Larceny * 1.0041 1.1437 1.1458 2.1776 1.0042 1.0042 1.7475 1.3510 1.5298 1.3510 * 1.3459 1.0041 2.1776
8C 8 Larceny * 1.3059 1.6944 1.6203 1.3684 1.3043 1.3027 2.1513 1.2020 2.1513 1.8707 * 1.5971 1.2020 2.1513
8D 8 Vehicle theft * 3.5794 2.3780 4.0475 5.5915 3.5809 3.5825 0.5900 1.3340 1.9133 1.3340 * 2.7931 0.5900 5.5915
9A 9 Robbery * 5.2527 5.7156 5.4565 4.8574 5.2529 5.2532 7.8257 7.1961 6.2520 5.9265 * 5.8989 4.8574 7.8257
9B 9 Larceny * 8.1923 10.6555 9.9787 6.9916 8.1886 8.1850 12.4578 10.3957 12.4578 12.0514 * 9.9554 6.9916 12.4578
9C 9 Robbery * 3.7778 3.8454 3.5670 11.0042 3.7758 3.7738 4.9015 5.1862 4.6206 4.3445 * 4.8797 3.5670 11.0042
10A 10 Larceny * 0.9358 0.5159 0.4822 1.1003 0.9355 0.9353 0.0606 0.3720 0.2601 0.7172 * 0.6315 0.0606 1.1003
10B 10 Larceny * 2.8581 3.4940 4.8179 14.2219 2.8536 2.8491 6.4051 6.5709 10.3095 6.4758 * 6.0856 2.8491 14.2219
10C 10 Larceny * 0.8052 0.7251 0.7451 5.5938 0.8050 0.8049 0.9059 0.8404 0.9060 1.2786 * 1.3410 0.7251 5.5938
11A 11 Vehicle theft * 2.9127 3.2715 3.4493 3.1192 2.9130 2.9134 3.6936 3.4335 3.4282 3.2087 * 3.2343 2.9127 3.6936
11B 11 Robbery * 0.3250 0.3250 0.2709 0.2513 0.3250 0.3250 0.4235 0.2263 0.4235 0.7011 * 0.3596 0.2263 0.7011
11C 11 Vehicle theft * 1.2689 1.7157 1.4115 1.4750 1.2709 1.2729 2.8945 0.6984 2.8945 2.2049 * 1.7107 0.6984 2.8945
12A 12 Larceny * 3.3881 4.2334 4.2640 10.9241 3.3867 3.3852 6.4050 3.2639 5.5843 5.2132 * 5.0048 3.2639 10.9241
12B 12 Larceny * 0.5562 0.5361 0.4973 2.8003 0.5562 0.5562 0.7897 0.6709 0.7897 0.9631 * 0.8716 0.4973 2.8003
13A 13 Larceny * 6.3282 7.2857 6.8066 6.0244 6.3248 6.3213 7.6438 7.4607 7.6438 7.9915 * 6.9831 6.0244 7.9915
13B 13 Assault * 1.4943 1.4943 1.4572 1.5279 1.4944 1.4944 1.6501 1.5954 1.6501 2.0824 * 1.5940 1.4572 2.0824
14A 14 Larceny * 1.9363 0.8706 0.6681 1.4498 1.9365 1.9368 0.3434 0.6058 0.2596 0.7631 * 1.0770 0.2596 1.9368
14B 14 Arson * 0.6898 0.3727 0.0251 0.8086 0.6899 0.6900 0.3359 0.3359 0.3359 0.6213 * 0.4905 0.0251 0.8086
15A 15 Vehicle theft * 0.7282 0.7189 0.8741 0.3362 0.7277 0.7271 0.8155 0.4855 0.8155 1.5128 * 0.7741 0.3362 1.5128
15B 15 Robbery * 0.4914 0.4914 0.3422 0.8254 0.4914 0.4914 0.6468 0.5693 0.6468 0.6546 * 0.5651 0.3422 0.8254
16A 16 Vehicle theft * 2.1107 2.0995 2.0555 8.2311 2.1107 2.1107 1.5957 1.6404 2.5911 2.4033 * 2.6949 1.5957 8.2311
17A 17 Burglary * 1.6484 0.3093 0.1000 1.0227 1.6461 1.6438 0.2879 0.2879 0.2879 0.5268 * 0.7761 0.1000 1.6484
18A 18 Larceny * 0.6308 0.4196 0.0417 1.0876 0.6329 0.6349 0.2132 0.3383 0.2132 0.6985 * 0.4911 0.0417 1.0876
19A 19 Larceny * 8.6462 9.4195 9.3665 8.6772 8.6486 8.6511 10.2869 9.2708 9.7022 9.5548 * 9.2224 8.6462 10.2869
20A 20 Burglary * 6.3520 5.7969 7.4256 28.3094 6.3486 6.3452 0.5934 0.8673 0.5934 0.7945 * 6.3426 0.5934 28.3094
21A 21 Burglary * 1.2396 0.8861 1.0564 1.2776 1.2393 1.2390 0.5243 0.5243 1.0253 0.4965 * 0.9509 0.4965 1.2776
22A 22 Larceny * 3.6828 2.6232 2.3597 2.0949 3.6803 3.6777 2.4937 2.8944 2.4937 2.8944 * 2.8895 2.0949 3.6828
24A 24 Larceny * 1.7959 0.5892 0.9322 2.3033 1.7975 1.7991 0.2658 0.3574 0.4222 0.6587 * 1.0921 0.2658 2.3033
33A 33 Robbery * 3.9901 5.0481 3.4056 7.2505 3.9940 3.9979 7.9485 7.6939 8.1907 7.9439 * 5.9463 3.4056 8.1907

------------------- -------------------- --------------------- * ---------------------------- ------------------------- ------------------------ -------------------------------- -------------------------- ----------------------------------------------------- --------------------------- ----------------------- ------------------------- * -------------------- ------------------------------ ---------------------
Median Error = * 2.5517 2.2159 2.2076 3.4704 2.5509 2.5502 1.9494 2.0102 2.0615 2.1440
Mean Error = * 4.0434 3.8441 3.8415 7.6472 4.0429 4.0424 4.0395 4.0305 4.0163 4.1467 *
SD Error = * 5.2696 5.4392 5.4619 12.1867 5.2696 5.2695 5.6244 5.6807 5.5961 5.4727 *
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Four th , the m edian  er ror is  sm aller  than  the average er ror.  Th a t  is, t he m edian  is
the point  a t  wh ich 50% of th e cases h ad a  sm aller  er ror a nd 50% had a  la rger  er ror. 
Overa ll, mos t  of the cases  were found  with in  a  shor ter  d is tance than  the average would
indica te.  This ind ica tes t ha t  severa l cases h ad very la rge err ors wh ereas m ost  had sm aller
er rors; th a t  is, th ey were outliers.  Over  a ll methods, t he J t c ker nel appr oach  for  a ll cr imes
had t he lowest  median  er ror (1.95 m iles). In  fact , a ll four  J t c methods h ad smaller  median
er ror s  t han  the s imple cen t rograph ic methods.  In  other  words , t hey a re more accu ra t e
than  the cent rograph ic met hods m ost  of the t ime.  The problem in  app lying th is logic in
pract ice, h owever , is tha t  one would  not  know if t he case bein g s tudied is  typ ica l of m ost
cases  (in which case , the er ror would  be r ela t ively small) or  wh et her  it  wa s a n  out lier .  In
other  words, t he median  would define a  sea rch  area  tha t  capt ured a bout  50% of the cases,
bu t  would  be very wrong in  the other  50%.   If we could  somehow develop  a  method for
iden t ifyin g when  a  case is  ‘typ ica l’ and when  it  isn’t , increased accuracy will emerge from
the J t c methods.  But , un t il then , th e simple cen ter  of minim um t ravel t ime will be th e
most accur at e meth od.

Fift h , t he amount  of er ror  va r ies by t he number  of in ciden t s.  Table 10.7 below
sh ows t he avera ge err or  for  each  method a s a  funct ion  of th ree size classes: 1-5 inciden t s;
6-9 inciden t s; and 10 or more inciden t s.  As can  be seen , for  ea ch of th e t en  met hods, the
er ror  decreases  with  increasing number  of inciden t s.  In  th is  sense, t he measu red  er ror  is
responsive to th e sample size from wh ich it  is based.  I t  is, per haps , not surpr isin g tha t
with  on ly a  handful of inciden t s n o method can  be very precise.

Sixth , th e relat ive accuracy of each  of these m ethods va r ies by sam ple size.  The
method or  methods wit h  the min im um er ror  a re boldfaced.  F or  a  limit ed number  of
inciden t s (1-5), the J t c ma them at ical function for  a ll cr imes (i.e., the nega t ive exponen t ia l
with  the pa rameters from t able 10.5) pr odu ced t he est ima te with  the leas t  er ror , followed
by the J t c kernel funct ion  for  a ll cr imes ; t he  was the th ird bes t .  The d ifferences  in  er ror
between  these were not  very grea t . F or  the middle ca tegor y (6-9 in ciden t s), t he cen ter  of
min im um dis tance produced the least  er ror  followed by t he J t c mathemat ica l fu nct ion  for
the specific cr ime t ype.  For  those offender s wh o had committ ed t en  or  more cr imes , th e J t c
ker nel function  for  the specific cr ime t ype pr oduced t he best  est imate, followed by t he
cen ter  of min imum d is tance.  The two mathemat ica l funct ions  produced  the leas t  accuracy
for  th is  sub-gr oup, t hough  aga in  the differences in  er ror  a re not  very big (2.2 miles for  the
best  compared to 2.7 miles for  the worst ).  In  other  words, on ly wit h  a  sizeable number  of
inciden t s does t he J t c ker nel den sit y approach  for  specific crim es pr oduce a good est imate. 
It  is  bet t er  than  the other  approaches, bu t  only sligh t ly bet t er  than  the sim ple measure of
the cen ter  of minim um dist ance.

S e a rc h  Are a

A number  of resea rchers  have been  in teres ted  in  the concep t  of a  sea rch  a rea  for  the
police (Rossmo, 2000; Ca nter , 2003).  The concept  is  tha t  the journey t o cr im e method can
define a  sm all sea rch a rea  wit h in  wh ich t her e is  a  h igher  pr obabilit y of find ing the
offender .  The average or  med ian  er ror  discussed  above can  be used  to define such  a  sea rch
area  if t r ea ted a s a  radius of a  circle.  While in tu itive, I’m not  su re whether  th is repr esen t  



Table 10.7

 Method Estimation Error and Sample Size:
 Average Error of Method by Number of Incidents (miles)

* Center of Center of Jtc Jtc Jtc Jtc * All Methods
Number of * Mean Minimum Minimum Triangulated Geometric Harmonic Kernel: Kernel: Math: Math: * Average Minimum
Incidents * Center Distance Travel Time Mean Mean Mean All Crime types All Crime types * Error Error
-------------- * ----------- ------------------------------------------------------ ---------------- --------------- ----------- ------------------- ----------- ------------------- * ----------------- --------------

3-5 * 6.9553 6.4861 6.4768 9.3672 6.9160 6.9545 6.4622 7.2321 6.3278 6.9954 * 7.0173 6.3278
* *

6-9 * 4.2596 4.0753 4.1000 10.6160 4.3331 4.2576 4.4805 4.2489 4.2274 4.2020 * 4.8800 4.0753
* *

10+ * 2.3832 2.3149 2.2980 4.8136 2.4575 2.3827 2.4880 2.2176 2.6725 2.6243 * 2.6652 2.2176
-------------- * ----------- -------------- -------------------------------------- ---------------- --------------- ----------- ------------------- ----------- ------------------- * ----------------- --------------
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a  mea ningfu l st a t ist ic.  For exa mple, taking the average er ror of the center  of minimum
dis tance (3.84 m iles) would produce a sea rch a rea  of 46.4 squ are m iles, n ot exa ctly a  sm all
a rea  in  which  to fin d a  ser ia l offender .  E ven  if we take the media n  er ror  of 1.94 miles from
the J t c ker nel a pproach  for  a ll crim es (1.94 m iles) will st ill pr oduce a sea rch a rea  of 11.9
square m iles, a nd it  would  be cor rect  only ha lf the t ime

In  oth er  words , these m et hods a re st ill very impr ecise.  Fur ther , the er ror is  liable
to increase over  t ime, r a ther  than  decrease.  With  about  50% of th e U.S. popula t ion  living
in suburbia (Demograph ia, 1998) and with  90% of Amer ican  househ olds owning a t  leas t
one motor  vehicle (U.S. Cens us Bureau , 2000), th e avera ge dista nces t r aveled by offender s
has pr obably been in creasing over t ime s ince most  types of t r ips h ave also shown increases
in  t r avel over  t ime.  Th is  means  tha t  un less police can  find  a  way to na r row down the
search a rea  consider ably, t he m et hods don’t  rea lly help beyond what  police intu it ively do
anyway, na mely look n ear  the dist r ibut ion  of the inciden t s committ ed by ser ial offender s.

Ca u ti on a ry  No te s

Of cour se, th is is  a  limited test .  It  wa s a  sm all sa mple (on ly 50 cases) from a  sin gle
jur isdict ion  (Baltim ore County).  The sa mple wasn ’t  even r andomly selected, but  chosen  to
examine the accu racy by a  r ange of s ample s izes .  Thus, t he conclusions a re on ly t en ta t ive
an d mu st be seen as h ypoth eses for fur th er work .  Clearly, more resear ch is needed.

Never theless, t here a re cer ta in  cau t ion s tha t  must  be considered in  usin g eit her  of
these journey to cr ime m et hods (the m athem at ical or the em pir ical).  Fir st , a  sim ple
technique, su ch  as t he cen ter  of minim um dist ance, ma y be as good a s a  more sophist ica ted
technique. I t  doesn’t  a lways  follow tha t  a  sophis t ica ted method will p roduce any m ore
accuracy t han  a  sim ple one.  F or  the t im e bein g, I would  advise cr im e ana lyst s who are
t rying t o detect  a  pa t t ern  in  the dis t r ibu t ion  of the in ciden t s of a  ser ia l offender  to do
exa ctly what  they h ave been  doing, basica lly looking a t  the da ta  and m aking a  su bject ive
guess about  where th e offender m ay be residing.  The kernel density J tc rout ine needs an
adequ a te amoun t  of informat ion  (i.e, a t  lea st  10 in ciden t s) to produce somewh at  pr ecise
est ima tes.  These techniques  sh ould be seen  for  now as r esea rch  tools ra ther  than  as
diagnost ics for  ident ifying th e whereabouts of an  offender .  They ar e just  too imprecise and
un reliable to depend on, at least u nt il more definitive results ar e obtained.

Second, th ere are other  limita t ions t o the technique.  The m odel must  be ca libra ted
for  each  in dividua l ju r isdict ion .  F ur ther , it  must  be per iodica lly r e-ca libra ted to account
for  changes  in  cr ime pa t t erns .  For  example, in  us ing the mathemat ica l model, one cannot
take t he pa rameters est ima ted for  Balt imore Coun ty (Table 10.3) and a pply th em to
another  cit y or  if u sin g t he kernel densit y m ethod take the resu lt s found a t  one t im e per iod
and assume tha t  they will r emain  in defin it ely.  The model is a  probabilit y m odel, not  a
guaran tee of cer ta in ty.  It  p rovides  guesses  based  on  the s imila r ity to other  offenders  of the
sa me t ype of cr ime.  In  th is sen se, a  pa r t icula r  ser ia l offen der  may not be typical and t he
model cou ld  actua lly or ien t  police wrongly if the offender  is  differen t  from the ca libra t ion
sa mple.  It  will t ake insigh t  by the invest igat ing officers  to know whet her  the pa t t er n  is
typ ica l or  not .
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Th ird, a s a  theoret ical m odel, the journey to cr ime approach is qu ite simple.  It  is
based on a  dis t r ibu t ion  of in ciden t s and an  assumed t ravel d is t ance decay fu nct ion .  F rom
the per spective of modeling the t r avel beha vior  of offender s, it is limit ed.  As m ent ioned
above, the method does not u t ilize in format ion  on  the dist r ibut ion  of t a rget oppor tun ities
nor does it  u t ilize informat ion  on t he t r avel mode and r out e t ha t  an  offender  takes.  It  is
purely a  st a t is t ica l m odel.  Th e research  area  of geogr aphic profilin g a t t empts to go beyon d
sta t is t ica l descr ip t ion  and understand the cogn it ive maps tha t  offenders use as well as how
these in ter act with  their  motives.  This is  good a nd should  clear ly guide fut ure r esea rch. 
Bu t  it  has t o be underst ood t ha t  the t heory of offender  t r avel beh avior  is n ot ver y well
developed, cer t a in ly compared to other  types of t r avel behavior .  F ur ther , some types of
cr im e t r ips may n ot  even  sta r t  from an  offender ’s residence, bu t  may be referenced from
anoth er  locat ion , su ch a s veh icle t hefts occur r ing nea r  disposa l locat ions.  Rout ine activit y
theory would  suggest  mult ip le or igin s for  cr im es (Coh en  and Felson, 1979).

Th e exis t ing models  of t r avel dem and u sed by t ransport a t ion p lanner s (wh ich h ave
them selves been  crit icized for being too sim ple) measu re a  var iet y of factors t ha t  have only
been margina lly included in  the cr ime t ravel lit era ture - the availability of opport un ities,
the concent ra t ion  of offender  types in cert a in a reas, the mode of t ravel (i.e., au to, bus,
wa lk), the specific rou tes t ha t  a re taken , th e int eract ion  between  t ravel t ime a nd t ravel
route, a nd other  factors.  I t  will be im por tan t  to in corpora te these elements in to the
understandin g of jou rney t o cr im e t r ips to bu ild a  much more comprehensive theory of h ow
offenders  opera te.  Travel behavior  is  very complica ted  and we need  more than  a  st a t is t ica l
dis t ance model t o adequa tely understand it . The next  seven  chapter s look  a t  an  applica t ion
of t r avel demand t heory t o cr ime t ravel.

Also, it ’s n ot clear  wh et her  knowing a n  offender ’s ‘cognit ive map’ will help in
predict ion .  There have been  no eva lu a t ion s tha t  have compared a  st r ict ly st a t is t ica l
approach  wit h  an  approach  tha t  u t ilizes in format ion  about  the offender  as he or  she
understands the environment .  I t  cannot  be assumed tha t  in tegr a t in g in format ion  about
the percept ion  of the environment  will a id  predict ion .  In  most  t r avel demand forecast s
tha t  t r anspor ta t ion  engineers and pla nners make, cognit ive in format ion  about  the
environment  is  not  u t ilized except  in  the defin it ion  of t r ip  purpose (i.e., wha t  the purpose of
the t r ip  was).  The models  use the actua l t r ips by or igin  and dest in a t ion  as the basis  for
formula t ing p red ict ions , not  the unders tanding of the t r ip  by the ind ividua l. 
Underst andin g is im por tan t  from the viewpoin t  of developin g theory or for ways t o
communica t e with  peop le.  Bu t , it  is  not  necessa r ily usefu l for  pred ict ion .  In  shor t ,
underst andin g and p rediction  are n ot t he same t h ing. 

On  the oth er  hand, t he journey to cr ime r out ine, pa r t icula r ly the ker nel densit y
appr oach, can  be useful for police depar tm ents if used car efu lly.  If there are su fficient
cases to bu ild an  est im ate (i.e., 10 or  more in ciden t s), it  can  provide addit ion a l in format ion
to officer s in vest iga t in g a  ser ia l offender  by r educin g t he number  of possible suspect s tha t
might  be lin ked to a ser ies  of crim es.  It  can  a lso pr ovide some dir ect ion in  orien t ing the
deploymen t  of officer s a nd det ect ives  invest iga t ing wh at  appea r  to be ser ia l offenses.  I t
pr ovides gu esses a bout  wh er e t he offender  might  be living, but  ba sed on sim ilar it ies wit h
previous offenders for  the same type of cr im e.  I t ’s not  going t o give an  exa ct  est im ate of
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wh er e an  offender  is living, but  will pr ovide some insigh t s in to which  area s t he individua l
might  be loca ted.  The J t c model should  be seen  as a  supplement  to other  t echniques, n ot  a
complete solu t ion .  Like a ll the st a t ist ical t ools in  Crim eS tat, it  must  be u sed ca refully and
intelligen t ly.  The ph ilosoph y of cr ime ana lysis  must  a lwa ys be to use a  techn ique wit h
thought  and with  a  syst emat ic pr ocedu re.
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1. It  sh ould a lso be poin ted out  tha t  the u se of dir ect  dis t ances will underest imate
t ravel dis t ances pa r t icula r ly if the st reet  net work follows a  gr id.

2. There are, of course, many other  types of mathemat ica l funct ions t ha t  can  be used
to descr ibe a  declin ing likelihood with  dis t ance.  In fact , ther e a re an  infinit e
number  of su ch  funct ions.  However, t he five types of funct ions pr esen ted h ere are
commonly used.  We a voided t he inver se dis t ance function because of it s poten t ia l to
dis tort  the likelih ood r ela t ionsh ip.  

   1
f(d)  = -------

  d ij
k

where k  is  a  power  (e.g., 1, 2, 2.5).  For  la rge dis t ances , t h is  funct ion  can  be a  useful
approximat ion  of the lessen in g t ravel in teract ion  wit h  dis t ance.  H owever , for  shor t
dis t ances, it  doesn’t  work.  As the dis t ance between  the reference cell loca t ion  and
an  in ciden t  loca t ion  becomes very small, a pproachin g zero, t hen  the likelihood
est im ate becomes very la rge, a pproachin g in fin it y.  In  fact , for  d ij = 0, the fun ction is
unsolvable.  Since ma ny dista nces bet ween  reference cells an d incident s will be zero
or  close t o zero, the funct ion  becomes u nusa ble.

3. It  is  actua lly t he in verse of the in verse dis t ance funct ion .  If a  dis t ance decay
funct ion  d rops off p ropor t iona l to the inverse of the d is tance,

Yij =   A* 1/d ij

where Yij is t he t r avel likelih ood, A is coefficien t , and d ij is  the dis tance from the
home base, then  the opposit e - a d ist ance increa se is just  the inver se of th is function

       1        d ij

Zij =  ------------------ =  ------------ = B* d ij

A* 1/d ij        A

4. There a re severa l sources of er ror  associa ted wit h  the da ta  set .  F ir st , t hese records
were ar rest  records p r ior  to a  t r ial. Un doubt edly, some of the individua ls were
incor rect ly a r res ted .  Second , there a re mult ip le offenses .  In  fact , more than  ha lf
the r ecords  wer e for  individua ls who were lis t ed two or  more t imes in  the da taba se.  
The t ravel pa t t ern  of repea t  offender s m ay be slight ly differen t  than  for  appa rent
firs t -t ime offender s (see figure 10.19).  Third, many of these ind ividua ls have lived
in  mult ip le loca t ions .  Cons ider ing tha t  many a re young and  tha t  mos t  a re socia lly
not well adjust ed, it  would  be expected tha t  these individua ls would have mult iple
homes.  Thu s, the dist r ibut ion  of inciden t s could reflect  multiple home bas es, ra ther
than  one.  Unfor tuna tely, t he da ta  we have only gives a  sin gle residen t ia l loca t ion ,
th e place at wh ich t hey were living when ar rested.

En dn ot e s fo r Ch ap te r 10
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5. If th e coordina te system is projected with  th e dista nce units in feet, meters or m iles,
then  the dist ance between  two point s is  the hypoten use of a  r ight  t r iangle usin g
Euclidea n  geomet ry.

  ____________________
dAB = % (XA - XB)2 + (YA - YB)2 (3.1)

repea t
wh er e ea ch locat ion is  defined by an  X and Y coordin a te in  feet , met er s, or  miles .  

If the coordina te syst em is sph er ica l with  un its  in la t itu des a nd longitudes, t hen  the
dista nce between t wo points is the Great  Circle dista nce.   All lat itudes an d
longitudes a re conver ted in to ra dia ns u sin g

     2B N
Radians (N) =  ---------------- (3.2)

      360 repea t

    2B 8
Radians (8) =  ---------------- (3.3)

     360 repea t

Then , t he dis t ance between  the two poin t s is  determin ed from

dAB =  2* Arcsin  { Sin 2[(NB - NA)/2] + Cos NA*CosNB*Sin 2[(8B - 8A)/2]1 /2 } (3.4)
repea t

wit h  a ll angles bein g defin ed in  radia ns (Snyder , 1987, p . 30, 5-3a ).

6. They a lso argu ed tha t  the combin a t ion  of in cident s - which  they ca lled ‘aggrega t ion ’,
would  dis tor t  the rela t ion sh ip  between  dis t ance and in cidence likelihood because of
the ecologica l fa llacy.  To m y m in d, t hey a re in cor rect  on  th is  poin t .  Da ta  on a
dis t r ibu t ion  of inciden t s by dis t ance tr aveled is a n  individua l character ist ic and is
not  ‘ecologica l’ in a ny way.  An ecologica l in ference occurs wh en da ta  a re aggregat ed
with  a  grouping var iable (e.g., sta te, county, city, cen su s t r act; see  Langbein  and
Licht man, 1978).  A frequen cy dis t r ibu t ion  of individua l cr ime t r ip d ist ances is a n
in dividua l probabilit y d is t r ibu t ion , s im ila r , for  exa mple, t o a  dis t r ibu t ion  of
individua ls by height , weight , income or  any other  character ist ic.  Of course, th ere
are sub-set s of th e da ta  tha t  have been  aggrega ted (sim ila r  to height s of men  v.
heigh t s of women, for  exam ple).  Clear ly, iden t ifying sub-groups  can  make bet t er
dis t inctions in  a  dis t r ibu t ion. But , it  is s t ill an  individua l pr obabilit y dis t r ibu t ion. 
Th is doesn ’t  pr oduce bias in  est imat ing a  pa ramet er , on ly var iability.  For  example
if a  pa r t icula r  dis t ance decay function implies  tha t  70% of th e offender s live with in ,
say, 5 miles of th eir comm itted incident s, then  30% don’t live with in 5 miles.  In
other  words, because the da ta  a re in dividua l level, then  a  dis t ance decay fu nct ion ,
wheth er estimat ed by a m at hema tical or a  kern el density model, is an  individua l
probabilit y m odel (i.e., an  a t t empt  to descr ibe the under lyin g dis t r ibu t ion  of
in dividua l t r avel d is t ances  for  journey t o cr im e t r ips).
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